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Abstract

CollecTor is developed by Tor Project’s Metrics Team for the purpose of archiving data
relating to the public Tor network and applications developed by Tor Project. This report
distills the requirements for a prototype modernized replacement of the CollecTor service,
and evaluates frameworks and libraries that are available to reduce code maintenance costs
for the CollecTor service.

This work was supported by Open Technology Fund under contract number 1002-2017-018. Support does not
imply endorsement. With thanks to Nick Mathewson and Tim Wilson-Brown for their help in clarifying certain
points in specifications and how they are implemented in tor, and thanks to Damian Johnson for his assistance in
experimentation using the stem library.

1



1 Introduction

The Tor anonymity system [3] protects Internet users from tracking, surveillance, and censorship.
The Tor network is made up of thousands of volunteer-run relays—servers that are usually located
in data centers—distributed across the world that enable users to make private connections
to services on the Internet. Currently, the vast majority of connections to the Tor network are
made using the Tor Browser. But a growing number of applications use the Tor network, and
we expect that many more will do so in the future.

Ongoing, robust network measurement is essential in order to respond to censorship events,
to adapt Tor Browser and other applications to respond to changing network conditions, and to
validate changes to the Tor network software.

In the field of Internet Engineering and Privacy Enhancing Technologies it is not common
to come across large open datasets. Often this can be due difficulties balancing utility goals
with privacy risks. CAIDA, one example of an organization that does make anonymised Internet
Engineering datasets available1, has performed a detailed analysis of the potential issues [2].
In the field of medicine and bio-informatics however, there has been a longer history of open
data and data re-use across studies. In one analysis, it was found that investment in the archive
and curation of open datasets had vastly greater research output returns than solely investing
in original research [10].

By collecting data about the Tor network it becomes possible to create accurate emulations
or simulations of the network [6] [7] [17]. This in turn allows for researchers to perform
experiments on private testbeds as opposed to on the public network where the experiment
may harm the security or anonymity properties of the Tor network. By collecting data over
time, it is possible to see trends in the data. For example, the blocking of Tor in China can be
identified from the data [9]. Data collection can then also be used to validate whether or not a
particular circumvention technique is working in a particular country.

The CollecTor service fetches data from various servers in the public Tor network and related
services and makes it available to the world2. The CollecTor service provides network data
collected since 2004, and has existed in its current form as a Java application since 2010. Over
time new modules have been added to collect new data and other modules have been retired
as the services they downloaded data from no longer exist.

As the CollecTor codebase has grown, technical debt has emerged as we have added new
features without refactoring existing code. This results in it becoming increasingly difficult to
add new data sources to CollecTor as the complexity of the application increases. Some of the
requirements of CollecTor, such as concurrency or scheduling, are common to many applications
and frameworks exist implementing best practices for these components that could be used in
place of the current bespoke implementations.

This report details the core requirements for a data collection application for the Tor network
(§2) and the specific requirements for two modules of the application: relaydescs (§3) and
onionperf (§4). Library frameworks that might be used for development of this application
are then evaluated against these requirements (§5) and an initial prototype is introduced (§6).
Finally, next steps are identified for progressing the development of the application (§7).

1An index of public datasets can be found at: https://www.caida.org/data/overview/.
2Documentation for the current implementation of the CollecTor service can be found at: https://metrics.

torproject.org/collector.html.
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2 Core Requirements

2.1 Collect

Tor Relay Descriptors (relaydescs)
Relays and directory authorities publish relay descriptors, so that clients can select relays

for their paths through the Tor network. This module is discussed in more detail in §3.

Bridge Descriptors (bridgedescs)
Bridges and the bridge authority publish bridge descriptors that are used by censored clients

to connect to the Tor network. We cannot, however, make bridge descriptors available as we
do with relay descriptors, because that would defeat the purpose of making bridges hard to
enumerate for censors. We therefore sanitize bridge descriptors by removing all potentially
identifying information and publish sanitized versions here.

Bridge Pool Assignments (bridgepools)
The bridge distribution service BridgeDB publishes bridge pool assignments describing

which bridges it has assigned to which distribution pool. BridgeDB receives bridge network
statuses from the bridge authority, assigns these bridges to persistent distribution rings, and
hands them out to bridge users. BridgeDB periodically dumps the list of running bridges with
information about the rings, subrings, and file buckets to which they are assigned to a local file.
The sanitized versions of these lists containing SHA-1 hashes of bridge fingerprints instead of
the original fingerprints are available for statistical analysis. This module has not been used
since 2016, however may be reintroduced in the future.

Web Server Logs (webstats)
Tor’s web servers, like most web servers, keep request logs for maintenance and informational

purposes. However, unlike most other web servers, Tor’s web servers use a privacy-aware log
format that avoids logging too sensitive data about their users. Also unlike most other web server
logs, Tor’s logs are neither archived nor analyzed before performing a number of post-processing
steps to further reduce any privacy-sensitive parts.

Exit Lists (exitlists)
The exit list service TorDNSEL publishes exit lists containing the IP addresses of relays that

it found when exiting through them.

Torperf’s and OnionPerf’s Performance Data (onionperf)
The performance measurement services Torperf and OnionPerf publish performance data

from making simple HTTP requests over the Tor network. Torperf/OnionPerf use a SOCKS
client to download files of various sizes over the Tor network and notes how long substeps take.
This module is discussed in more detail in §4.

3



Future Active Measurement Modules A
Active measurement, from a perspective of user privacy, can be considerably safer than

passive measurement. As the Tor network continues to grow, we may wish to expand the use of
active measurement using tools such as PATHspider [8] or exitmap [19].

2.2 Archive

While it is important for clients and servers in the Tor network to have strict validation of
documents and their signatures, the CollecTor service does not want to just drop documents that
fail validation. It may be that a descriptor is using a new format that we don’t yet understand, or
perhaps it is malformed due to a bug and having the documents archived will help in debugging
the issue.

The archive should be able to verify its own integrity, ensuring that descriptors have not
been truncated or altered. It should also be possible to determine the amount of descriptors
that are missing, either through timestamps where a descriptor/status should have been made
available or by a descriptor being referenced from another descriptor, and warn if the amount
of missing descriptors exceeds a predefined threshold.

Archiving cryptographic signatures can present challenges as the signatures themselves
use algorithms that over time will either be broken due to design or implementation flaws, or
simply due to the increase in available computing power. A number of systems provide archive
timestamps [1] [5] where it is possible to prove that a data object existed at a given time and
so if an algorithm is considered to not be broken at that time then the original signature can be
trusted.

2.3 Serve

CollecTor does not only collect and archive documents, but also makes them available to other
applications. These may be other services run by Tor Metrics such as Onionoo3, or external
applications run by researchers.

For services that would like to consume all descriptors of a particular type as they become
known, CollecTor needs to make available recently obtained descriptors. This is currently done
by providing descriptors in a concatenated form with one file per download run, however we
may in the future only provide an index to the recently downloaded descriptors to allow for
applications to fetch only the descriptors they need.

To facilitate the use of other CollecTor instances as data sources, and to offset load generated
on the network by CollecTor, a modern CollecTor may implement parts of the Tor directory
protocol version 3 [13]. If this protocol were extended to provide index functionality then the
current system of providing concatenated files for recent documents could be replaced. This
would also be of benefit for those debugging issues with the network as individual descriptors
could be easily downloaded for manual examination.

Currently the Onionoo service begins to download data from CollecTor between :15 and :20
past the hour. If it were possible to download data sooner than this, this would be of benefit to
those monitoring the health of the Tor network and individual relay operators as they would be

3This service is described at: https://metrics.torproject.org/onionoo.html.
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Document Created by† Served by† per hour size ea. size per hour
Detached Signature A A 9 1276B 11.48KB
Status Consensus “ns” A C 1 2.17MB 2.17MB
Status Consensus “microdesc” A C 1 2.00MB 2.00MB
Status Vote A A 9 4.34MB 39.02MB
Bandwidth List‡ A A 6 2.60MB 15.60MB
Server Descriptor R C 707 2829B 2.00MB
Extra Info Descriptor R E 705 2100B 1.48MB
Microdescriptor A C 35 506B 17.70KB
Total — — 1473 — 62.30MB
† A is the set of directory authorities, E is the set of extra info caches, C is the set of directory

caches, and R is the set of all relays. A⊆ E ⊆ C ⊆ R.
‡ These numbers are estimates of the numbers we will see once bandwidth lists are advertised

from all planned bandwidth authorities. They were not advertised by any authority in
September 2018.

Table 1: Summary of document types collected by the relaydescs module. Counts per hour and
average sizes are determined by the descriptors that were archived by CollecTor for September
2018.

able to detect problems sooner. If CollecTor could also provide status information about the
times at which it had completed its latest download tasks, then services could consume this in
order to improve the timeliness of downloads.

For services that would like to perform historical analysis of the collected documents, all
documents must be available for download. Currently this is done by providing monthly
compressed tarballs containing the documents.

An index file that references the filenames for these concatenated files and archives is
generated to assist applications in discovering documents, but it currently does not index the
specific documents contained within the concatenated files or tarballs.

3 The relaydescs module

The relaydescs module is the primary module for data about the public Tor network. This
module collects network status votes and consensuses, certificates, microdescriptors, and server
and extra-info descriptors. The format and purpose of each of these documents is described in
version 3 of the Tor directory protocol specification [13].

In the past, this module would also collect version 2 network statuses and version 1 directo-
ries from the network. While we will not implement collecting these from a live network, they
should be importable via the local filesystem.

A summary of the documents collected by this module is shown in table 1. The counts and
sizes of each document type are expected to increase over time, though some more than others.
The bandwidth list document type is still under development with new features being added,
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Figure 1: Number of relays seen running in each consensus between September 2007 and
November 2018.

for example, while microdescriptors are intentionally minimal containing as little information
as possible for clients to still be able to function. Figure 1 shows the number of relays seen
running in consensuses since 2007, which directly influences the number of server, extra-info
and microdescriptors seen and also the sizes of other documents. This number has remained
relatively stable in recent years with network growth coming from more capable relays as
opposed to increased numbers of individual relays.

While most documents are served by caches, they are not instantly available from every
cache and timing must be carefully considered. References between documents are shown in
figure 2. All document types can be collected by fetching the detached signatures and recursively
downloading the referenced documents.

Unfortunately, detached signatures are only available for (typically) 5 minutes per voting
period and only from the authority that generated them4. While there are currently only two
consensus flavors, there may be more in the future and missing a detached signature means
that we would not discover it. As these documents are so tricky to get hold of, an example is
presented in appendix A.

Without detatched signatures it is still possible to guess that a new consensus is available
when the currently known consensus is no longer “fresh”, as determined by the fresh-until time
in the known consensus. The known consensus flavors can then be downloaded.

4The Tor directory protocol §3.11 does specify a URL for the detached signature that relates to the current
consensus, but this URL has not been implemented in tor.
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Detached Signature

Status Consensus (ns flavor)

Status Consensus (microdescriptor flavor)

Bandwidth ListServer Descriptor

Status Vote

Extra Info Descriptor

IPv6 GeoIP Database * IPv4 GeoIP Database *

Microdescriptor

*The GeoIP databases are referenced here but not archived themselves in CollecTor.

Figure 2: Document references within documents collected by the relaydescs module.

3.1 Document Sources

This module will need to fetch data from both the network, and the local file system. Depending
on how old a descriptor is, it may be available from different locations on the network.

Network locations include:

• Directory Authorities (using version 3 of the Tor directory protocol)

– Connections might use DirPorts or tunnel over the relay’s ORPort using the mecha-
nism described in §2.6.1 of the Tor protocol specification [14].

• Directory Caches (using version 3 of the Tor directory protocol)

– As above. Additionally, directory caches that do not set “caches-extra-info” in their
server descriptors, as described in §2.1.1 of the Tor directory protocol, may not make
extra-info descriptors available.

– Future versions of CollecTor may additionally implement the Tor directory protocol
to allow for code reuse in fetching from other CollecTor instances. This is discussed
further in §3.4.

• CollecTor instances (using CollecTor’s File Structure Protocol [11])
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Figure 3: Number of directory servers and extra-info caches seen running in each consensus
between May 2018 and November 2018.

This report is written with the assumption that the Tor directory protocol exists as-is, although
conclusions from this report may influence work in improving or extending the protocol later
to improve performance, archive rate (ratio of documents archived compared to documents
missed), or to reduce bandwidth cost.

At the time of writing there are 9 directory authorities and 2 CollecTor instances. Figure 3
shows the numbers of directory caches and extra-info caches seen in each consensus recently.
In the time period shown, there was an average of 5591 directory caches in each consensus.
There are some directory caches however that we are not currently able to use as they do not
advertise a DirPort. The stem library has initial support for using ORPort tunnelling to retrieve
descriptors, but it is not yet reliable. There does not exist a Java implementation that the current
implementation of CollecTor could use to download descriptors via an ORPort. This leaves an
average of 4286 usable directory caches in each consensus.

When it comes to fetching extra-info descriptors, there are an average of 59.6 extra-info
caches in each consensus. Of these, 59.2 on average advertise a DirPort. By default extra-info
descriptors are not cached by directory caches as the descriptors are not of use to clients. If
numbers are maintained at their current levels then this should provide adequate fallback to
allow collection of descriptors if the directory authorities become unreachable.

For both directory caches and extra-info caches the trend is that the number of caches
advertising a DirPort is decreasing and so it is important to think about how a modern CollecTor
would be able to fetch via an ORPort instead.

In addition to fetching from the network, documents may also be imported from the local
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file system. These formats include:

• CollecTor’s File Structure Protocol

• Cached descriptors from a tor client’s data directory

3.2 Download Scheduling

The timing of document download tasks is determined by the valid-after (tVA) and fresh-until
(tFU) lines found in the latest consensus. DistSeconds (ddist) and VoteSeconds (dvote) are
determined by the voting-delay line in the latest consensus. t0 is defined as the time that the
module is started. More information on these timings can be found in §1.4 of the Tor directory
protocol.

For all documents downloaded, the descriptors are annotated with their type and other
metadata before being saved in the archive. Each time a task is run, the new descriptors
collected should be made available either as a concatenated file or as an index of descriptors to
be downloaded by applications that would like to consume all of a particular type of descriptor.

Task 0: Bootstrap t = t0

Download the latest current consensus from a directory authority if we do not already have
one. If a download fails, try another directory authority until all have been tried.

Task 1: Eager Vote Fetching t = tFU − ddist −
dvote

2
Download the next votes from each directory authority concurrently. During this time the

votes have not yet been computed into a consensus, but we are able to parse the votes to get
a head start on discovering new descriptors. Server descriptors, extra-info descriptors and
microdescriptors are all available to fetch at this stage.

Task 2: Eager Consensus Fetching t = tFU −
ddist

2
Download the detached signatures from each authority. This allows us to discover all

consensuses that have been generated.
If authorities have computed different consensuses, this is the only time at which they

can be retrieved. Archiving these alternate consensuses may prove to be useful in debugging
bugs in computing consensuses5. A consensus requires n

2 + 1 signatures, where n is the total
number of known directory authorities, in order to be served via the directory protocol as the
current consensus. The voting protocol does not preclude the existence of more than one valid
consensus.

5In July 2018, a bug occurred in the sorting of version numbers leading to 5 authorities voting one way,
and 4 voting another. Comparing the consensuses allowed the root cause to be quickly discovered. See https:
//bugs.torproject.org/26485 for more information.

9

https://bugs.torproject.org/26485
https://bugs.torproject.org/26485


●

●

●

●

●

●

● ●

●

0

3

6

9

bastet dannenberg dizum Faravahar gabelmoo longclaw maatuska moria1 tor26

Directory Authority

D
es

cr
ip

to
rs

Descriptors only found from /tor/server/all on 24th November 2018

Figure 4: Number of server descriptors that are found by requesting the URL of all known
server descriptors from directory authorities at :35 to :40 minutes past the hour, every hour, on
the 24th November 2018, that were not referenced by the vote generated prior to, or after the
download.

Task 3: Greedy Discovery o
While not bandwidth-friendly, directory authorities provide a method for downloading

a concatenated set of the most recent descriptors for all known servers. This can include
descriptors that have not been included in votes, but almost certainly includes many descriptors
we already know about. The current CollecTor implementation has support for this feature and
would run this task every 24-hours if enabled. The official Tor Metrics instances do not have
this enabled.

Download the full list of extra-info descriptors from every authority. If a request for an
authority fails, do not repeat the request. Once complete, download the full list of server
descriptors from every authority. Again, if a request for an authority fails, do not repeat the
request. The extra-info descriptors are requested first to avoid the reference checker discovering
the extra-info descriptors from the server-descriptors and enqueueing download tasks to retrieve
them.

An experiment performed during the preparation of this report has shown that this is
incredibly wasteful with a mean average of 2.9 descriptors discovered by downloading all
known descriptors compared to those discovered through references in the votes prior to and
after the download. Figure 4 shows the distributions across the directory authorities. Each
analysis considered only a single directory authority.

Only two instances were seen across all directory authorities in the 24 hour period of a
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descriptor being available in two consecutive downloads of all known descriptors without being
referenced by the vote in between. In both cases, the authority was “dizum”. Upon investigation,
one descriptor is for a relay that appears to have a dynamic IP address and non-continuous
uptime. The second descriptor is for a relay that is running tor version 0.2.4.20, a no longer
recommended version. It is not clear why these descriptors were retained but not used in a vote.
The authority may have not found the relays to be reachable before the vote was generated.

As each download during the experiment was approximately 17 megabytes (uncompressed),
there does not appear to be any compelling reason to enable this feature. In order to avoid
missing descriptors it would have to run every hour, and not every 24 hours as the current
implementation does.

A future extension to the Tor directory protocol may enable collecting these descriptors
by providing a URL that only serves descriptors that were not present in the last vote. The
timing to use for this request would need to be considered unless authorities were also to make
available multiple descriptors for a single relay in this new URL instead of just the latest.

Task 4: Continuous Reference Checking î
This task runs continuously. It holds a collection of “starting point” documents that have

been fetched by tasks 0–2. At startup, the last 3 hours of available “starting point” documents
will be loaded from the archive on disk if available.

This task keeps a list of documents that have been requested since the downloader last
changed phase (described in §3.3). If a download is attempted, it won’t be attempted again
until the next phase.

The reference checker follows a fixed process. It first guesses at new consensuses, consensus
flavors, consensus signatures, or votes that might exist based on the current time and fetches
these, adding them to the “starting point” documents. Using these:

1. From each vote, bandwidth files are identified and fetched.

2. From each vote and consensus, server descriptors and microdescriptors are identified and
fetched.

3. From each server descriptor, extra-info descriptors are identified and fetched.

When fetching server descriptors, extra-info descriptors, and microdescriptors, these are
batched to reduce the number of requests that must be made. After each download attempt,
the descriptor digests that were received are removed from the request and it is then repeated
against another server until each of the servers available has been tried.

Following each run, starting points that are older than 3 hours are removed.

3.3 Downloader Operation

The downloader will fetch descriptors in two phases. This modifies the behavior of the reference
checker. Until a consensus is known, the downloader will operate in phase α. The main
motivation behind the phases is to allow a second chance for the reference checker, described
in the previous section, to locate any missing descriptors. It will also allow for load balancing
in the event that downloads are triggered for descriptors that would now be available from
directory caches.
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Phase α: Directory Cache Mode tFU − ddist −
dvote

2 ¶ t < tVA+
tFU−tVA

2
During this time, downloads occur in a similar manner to directory caches as described

in §4 of the Tor directory protocol. If a vote download failed in the previous step, it must be
re-attempted now. If a consensus download failed in the previous step it must be re-attempted
now. As in phase 2, we should try to collect all available consensus signatures (or alternate
consensuses).

If a download for a particular descriptor fails, we will attempt the download again using
another authority. Within a single phase period, only one attempt is made per authority per
descriptor.

Phase β: Client Mode tVA+
tFU−tVA

2 ¶ t < tFU − ddist −
dvote

2
During this time, downloads occur in a similar manner to clients as described in §5 of the

Tor directory protocol. This phase gives a second chance for descriptors that were missed
earlier. This mode would also include fetching from other known CollecTor instances via the
Tor directory protocol as discussed in the next section.

Directory caches in the network will have retrieved all the descriptors referenced by the
latest consensus by the start of this period.

3.4 Directory Server

A server, either as part of CollecTor or as a CollecTor client, implementing the Tor directory
protocol would be able to act as a directory cache. All of the necessary documents are already
available in the archive, they just need to be returned when requested. Consensus diff6 func-
tionality would require some additional logic to be provided, but this functionality could also
be used to fetch consensus diffs instead of full consensuses to reduce the load on the network
created by CollecTor.

As a CollecTor instance retains descriptors for longer than the average directory cache in
the Tor network, missing descriptors could be synchronized from other instances once they are
no longer available from the caches. While this does introduce the need to add code that serves
the descriptors, it reduces the need for alternate code to synchronize with other instances. It is
not currently possible to download individual descriptors from another CollecTor instance.

This server would only implement a directory server and would not function as a relay.
Currently no such servers exist in the consensus but if one did, it would be compliant with the
protocol. There is a risk that such servers may provide poor performance which would degrade
client performance, and cause extra bandwidth to be used by clients as requests may need to be
retried. Directory authorities would not perform the usual checks as there is no ORPort to use.

The Tor directory protocol previously specified a “BadDir” flag that could be used to mark
bad directories, indicating that clients should not attempt to use them. This functionality was
removed from tor in 20147.

6This functionality is described in §4.5 of the Tor directory protocol.
7More information about the removal of the flag can be found at: https://bugs.torproject.org/13060.
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4 The onionperf module

In comparison to the relaydescs module, this module is a lot simpler. OnionPerf8 uses multiple
processes and threads to download random data through Tor while tracking the performance of
those downloads. The data is served and fetched on localhost using two TGen (traffic generator)
processes, and is transferred through Tor using Tor client processes and an ephemeral Tor Onion
Service. Tor control information and TGen performance statistics are logged to disk, analyzed
once per day to produce a json stats database and files that use the Torperf results format, and
can later be used to visualize changes in Tor client performance over time.

4.1 Document Sources

This module collects the Torperf formatted results files from OnionPerf instances, of which Tor
Metrics currently has 3. One result file is produced at midnight each day for each of the file
sizes configured to test with. There are three file sizes used for measurements: 50 KiB, 1MiB
and 5MiB. This means that we collect 3×3 = 9 results files each day. The size of the downloads
are chosen probabilistically and so it is not easy to predict the sizes of each file. In September
2018, a total of 24 MB of results were collected.

4.2 Download Scheduling

Each day the scheduler should start downloads of the results from the previous day. There are
no other sources available, except perhaps other CollecTor instances, for the files and so if a file
is unable to be retrieved due to a permanent error it should not be reattempted.

5 Frameworks Evaluated

All of the evaluated frameworks use the Python language, initially targeting version 3.79. Tor
Metrics runs its services on Debian stable systems. The next Debian release, Debian 10 “buster”,
is expected mid-2019 and will include Python 3.7 or later.

The CollecTor service is still well within the limits for operation on a single machine and
so while distributed frameworks such as Apache Beam do offer scalability, in this case it is
unnecessary and would lead to additional complexity in the codebase. There are four main
areas in which we would like to re-use an existing framework: descriptor parsing, concurrency,
scheduling and plugin architecture. Each of the frameworks is evaluated for its applicability to
the application and its ability to reduce software development and maintenance costs for the
CollecTor application.

8The source code and documentation for OnionPerf can be found at: https://github.com/robgjansen/
onionperf.

9Should it be necessary to deploy any replacement service before the next Debian release, it would be possible
to use lower-level mechanisms to recreate the Python 3.7 language features we use, but this would mean additional
code complexity and maintenance costs, which we are trying to reduce.
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5.1 Document Parsing

CollecTor needs to work with many document formats that are specific to the Tor ecosystem.
The current Java implementation of CollecTor uses metrics-lib10 which is primarily maintained
by Tor Metrics for the use of applications developed by Tor Metrics.

stem
stem11 is a Python library for parsing Tor-specific data formats, and for interacting with

remote Tor servers (i.e. directory servers). It does not support all the current formats supported
by metrics-lib although this support can be added. The library is also used as part of Tor Project’s
nyx application and as part of the test-suite for tor which means that it is being exercised by
more developers than just the Tor Metrics team and hopefully allows for issues to be quickly
discovered and fixed.

5.2 Concurrency

The vast majority of the work performed by CollecTor is I/O bound. That is to say that the
time it takes to complete a task is determined principally by the period spent waiting for I/O
(network or disk) operations, to be completed. When fetching server descriptors, extra-info
descriptors, or microdescriptors, there will typically be thousands of descriptors to fetch before
moving on to the next stage. Downloads of descriptors of the same type do not depend on each
other and so are candidates for concurrent execution.

The current Java implementation of CollecTor uses java.util.concurrent12 to provide
concurrency, with the tasks running in threads. All synchronisation between tasks must be
performed manually.

asyncio
asyncio13 [16] is a framework for asynchronous programming in Python. Coroutines declared

with async/await syntax [15] is the preferred way of writing asyncio applications. While
callbacks are possible, they are not used explicitly in practice. Future objects, which represent
an eventual result of an asynchronous operation, are used to bridge low-level callback-based
code with high-level async/await code.

Other language features, for example the ability to delegate to a subgenerator [4], allow
for concurrent programming while writing in a sequential fashion. Parallel computing using
threads is hard because of race conditions. asyncio is explicit about where the event loop may
take control of the program. This reduces mental load for developers as resulting programs are
easier to follow, which should help to reduce development and maintenance costs directly.

While the stem library does not have native support for asyncio it does have support for
asynchronous requests and a simple wrapper can be written to allow integration. An example
is shown in listing 1.

10The documentation can be found at: https://metrics.torproject.org/metrics-lib/.
11The documentation can be found at: https://stem.torproject.org/.
12The documentation can be found at: https://docs.oracle.com/javase/8/docs/api/java/util/

concurrent/package-summary.html.
13The documentation can be found at: https://docs.python.org/3.7/library/asyncio.html.
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1 async def fetch_consensus ():
"""

3 Returns the latest consensus.
"""

5 loop = asyncio.get_running_loop ()
query = stem.descriptor.remote.Query("/tor/status -vote/current/consensus",

7 document_handler=stem.descriptor.DocumentHandler.DOCUMENT)
result = await loop.run_in_executor(None , query.run)

9 for consensus in result:
return consensus

Listing 1: Python asyncio wrapper for stem to download the latest consensus

async def fetch_consensus ():
2 """

Returns the latest consensus.
4 """

query = stem.descriptor.remote.Query("/tor/status -vote/current/consensus",
6 document_handler=stem.descriptor.DocumentHandler.DOCUMENT)

result = await curio.run_in_thread(query.run)
8 for consensus in result:

return consensus

Listing 2: Python curio wrapper for stem to download the latest consensus

asyncio is part of the Python standard library. It may still be quite new but it has momentum.
For modules like the onionperf module, that require only to fetch data from a remote HTTP

server, the aiohttp14 library provides an asyncio-compatible asynchronous HTTP client. This
library also includes web server functionality that could be used to serve archived documents.

Local file I/O is blocking, and cannot easily and portably made asynchronous. While
there has been efforts to bring asynchronous file I/O to POSIX and Linux it does not seem to
have been adopted by developers. To avoid file I/O blocking execution, we can make use of
the aiofiles15 library which provides an object with an API identical to an ordinary file. The
asynchronous I/O is provided by delegating I/O operations to a thread pool.

curio
curio16 is a library of building blocks for performing concurrent I/O and common system

programming tasks such as launching subprocesses, working with files, and farming work out
to thread and process pools. It uses Python coroutines and the explicit async/await syntax but
does not use asyncio.

While curio is not part of the Python standard library it does not have any third-party
dependencies. It is quite low-level however and so there would likely be work in building
enough infrastructure on top of it to handle the tasks we would like to perform.

14The documentation can be found at: https://docs.aiohttp.org/.
15The source code and documentation can be found at: https://github.com/Tinche/aiofiles.
16The documentation can be found at: https://curio.readthedocs.io/.
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While the stem library does not have native support for curio, it is again simple to create
a wrapper for integration. An example is shown in listing 2. This is very similar to the
asyncio wrapper as it is using the same concepts.

There is no HTTP support available from curio, nor a recommended HTTP library to use.
The asks17 library provides a curio-compatible HTTP client but does not implement a server.

curio does provide support for asynchronous file operations. Like aiofiles it uses threads,
however this may change in the future. The use of threads is noted as an implementation detail
in the documentation which may indicate that this would change in the future to be the most
optimised mechanism for the platform that is in use.

One strong feature of curio is that it recognises that asynchronous programming is still new
to Python and provides primitives, such as curio.UniversalQueue, that allow for communication
between async tasks and threads. The asyncio counterpart, asyncio.Queue, will only permit
communication between async tasks. This allows for transition between legacy libraries and
those that support the new language features, however this is a fresh implementation of the
application using Python so we do not have problems with legacy dependencies.

Twisted
The Twisted framework for Python is very mature event-driven framework and has support

for a large number of network protocols. It does not have support for Tor’s directory protocol
although this could be built on top of a Twisted HTTP client for DirPort. For ORPort usage a
minimal implementation of the Tor protocol would be required using Twisted for the directory
protocol client to use, which is a non-trivial piece of work.

There exists a library for Tor’s control protocol [12], txtorcon18, however this application
is primarily concerned with the directory protocol and the documentation for txtorcon points
users towards stem for this.

Wrapping stem is again possible as shown in listing 3, but the reactor pattern used by
Twisted makes using this more complicated. It is not possible to pause the execution of the
calling function as with the async/await syntax and so a callback must be used. This pattern
inverts the flow of control and so makes the code more difficult to debug than the pseudo-
procedural pattern made possible by async/await and other related language features.

Non-blocking file I/O is provided by the fdesc19 module but the API for this is very limited.
It also operates directly on file descriptors and does not provide a complete abstraction for files.

5.3 Scheduling

Each module needs to download documents on a schedule. Timing can be very important as
there may only be a small window in which documents are available for download before they
are discarded. The current Java implementation uses java.util.concurrent which provides
basic scheduling functionality.

17The documentation can be found at: https://asks.readthedocs.io/.
18The documentation can be found at: https://txtorcon.readthedocs.io/en/latest/.
19The documentation can be found at: https://twistedmatrix.com/documents/current/api/twisted.

internet.fdesc.html.
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1 def fetch_consensus ():
"""

3 Returns the latest consensus.
"""

5 query = stem.descriptor.remote.Query("/tor/status -vote/current/consensus",
document_handler=stem.descriptor.DocumentHandler.DOCUMENT)

7 query.run()
for consensus in result:

9 return consensus

11 def handle_consensus(consensus):
"""

13 Do something with the consensus.
"""

15 ...

17 t = reactor.deferToThread(fetch_consensus)
t.addCallback(handle_consensus)

19 reactor.run()

Listing 3: Python Twisted wrapper for stem to download the latest consensus

The article [18] that inspired schedule, evaluated below, describes a wishlist for a scheduling
solution. First, it must have a powerful and human-friendly syntax. This is particularly important
for CollecTor as there will be a number of scheduled tasks to perform per module and it is
important that mistakes are not made. To correctly implement the Tor directory protocol
specification, some times must be calculated based on values found in the latest consensus and
cannot simply be declared with a crontab-like syntax.

Testing is also important as a means to reduce development costs. By being able to easily
validate the scheduling of tasks, and also test tasks themselves in an environment that does not
differ from the environment used for scheduled execution, it is possible to catch bugs before
software changes are deployed.

The operation of the scheduler must be clear to ensure that tasks are running correctly and
to assist in any debugging. This can be achieved by having good visibility into the scheduler
through logging and performing as little work in the scheduler as possible with all heavy lifting
being performed by individual tasks.

sched
The sched20 module, part of the standard library for Python 3.7, provides a general purpose

scheduler. While it is nice to not have external dependencies, it operates on a monotonic clock
and does not understand UTC time on which the directory authorities, and other services that
CollecTor must interact with, operate. It also provides no facility for recurring tasks or for
scheduling tasks to run at a specific time, only to run tasks once after a delay.

schedule
20The documentation can be found at: https://docs.python.org/3.7/library/sched.html.
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1 import asyncio
import time

3 import schedule
from threading import Thread

5

loop = asyncio.new_event_loop ()
7

def f(loop):
9 asyncio.set_event_loop(loop)

loop.run_forever ()
11

t = Thread(target=f, args=(loop ,))
13 t.start()

15 def run_async(job_coro):
job_task = job_coro ()

17 loop.call_soon_threadsafe(asyncio.async , job_task)

19 async def job():
await asyncio.sleep (1)

21 print('Hello , world!')

23 schedule.every (10).seconds.do(run_async , job)

25 while 1:
schedule.run_pending ()

27 time.sleep (1)

Listing 4: schedule wrapper for asyncio tasks

schedule21 is an in-process scheduler for periodic jobs that uses the builder pattern for
configuration. The syntax is easy to understand and so should reduce mistakes. It supports
scheduling tasks to run at periodic intervals, or at fixed times. It does not support scheduling a
task to run only once without modifying the task to cancel its schedule after its execution.

It expects that programs will either have thread-safe tasks or that the developer will take
care of ensuring safe execution of the tasks. Listing 4 shows how a wrapper might be used to
run asyncio tasks using schedule.

The current maintainer has indicated the he does not have the time to properly maintain
this package and is seeking to bring on a co-maintainer22 which indicates a risk that if this
library is used, Tor Metrics may become the de-facto maintainers of it.

Advanced Python Scheduler
Advanced Python Scheduler23, also known as apscheduler, is an in-process scheduler for

periodic jobs that provides an object to add jobs to at runtime, or permits for scheduled tasks to
be added by using a decorator.

21The documentation and source code can be found at: https://github.com/dbader/schedule.
22More discussion may be found at the GitHub issue: https://github.com/dbader/schedule/issues/219.
23The documentation can be found at: https://apscheduler.readthedocs.io/.
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It supports scheduling tasks to run at periodic intervals, at fixed times, and also for a single
execution at a fixed time or interval. Jobs can be stored persistently on disk, and apscheduler will
check for misfired jobs (where the job was unable to be executed at the desired time) and run
the job immediately if it is configured to do so.

By default, only one instance of each job is allowed to be run at the same time. This means
that if the job is about to be run but the previous run hasn’t finished yet, then the latest run is
considered a misfire. It is possible to set the maximum number of instances for a particular job
that the scheduler will let run concurrently.

apscheduler provides a scheduler that runs on an asyncio event loop that can run jobs based
on native coroutines using the async/await syntax. It also provides a scheduler that runs on a
Twisted reactor that uses the reactor’s thread pool to execute jobs.

5.4 Plugin Architecture

By building CollecTor as an extensible application, it allows easy addition of new data sources
in the future. It allows for both Tor Metrics and third-party developers to easily enhance your
software in a way that is loosely coupled: only the plugin API is required to remain stable.
This extensibility is achieved through the definition of one or more APIs and a mechanism for
collecting code plugins which implement this API to provide some additional functionality.

twisted.plugin
This is a component of Twisted, which was previously evaluated for its concurrency features,

but can also be used as a standalone module. It has a dependency on zope.interface which is
used to define interfaces for plugins.

It allows new plugins to be discovered flexibly. For example, plugins can be loaded and
saved when a program is first run, or re-discovered each time the program starts up, or they
can be polled for repeatedly at runtime (allowing the discovery of new plugins installed after
the program has started).

Overall this is quite a heavy module and the complexity in its dependencies may cause more
trouble than the benefits it brings are worth.

straight.plugin
This module is quite light but also does not have any interface mechanism. Instead, plugins

are found from a namespace and can be identified by a parent class. Through namespace
packages, plugins can be split up into separate codebases, even managed by different teams, as
long as they all implement the same base API.

If interfaces are required the mechanisms in collections.abc, part of the standard library,
may provide a suitable implementation.

5.5 Discussion

Whatever other frameworks are used, stem is the only viable choice for descriptor parsing if
targeting Python 3.7. Fortunately it is well maintained and is a mature stable library. During
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the course of preparing this report, a number of features were included in stem to assist in
experimentation including:

• Parsing descriptors from a byte-array (#28450)

• Parsing of detached signatures (#28495)

• Generating digests for extra-info descriptors (#28398)

• Generating digests for votes and consensuses (#28398)

• Generating digests for microdescriptors (#28398)

While potential authors of libraries that would compete with stem should not be discouraged
from implementing alternatives, stem does fill all of the requirements of the CollecTor application
for the parsing of descriptors.

For concurrency, the asyncio framework appears to be the best choice. Moving away from
a threading model to an asynchronous model it provides all the functionality required for
the CollecTor service requirements. curio would also have been a viable option however it
has a smaller community than asyncio and so less library code is readily available for reuse.
There does not appear to be a compelling advantage to using Twisted over the more modern
frameworks that make use of new language features such as the async/await syntax despite
its maturity.

In the evaluation of these frameworks it became clear that performing file I/O operations
in an asynchronous way is not simple. The asyncio framework abstracts the complexity by
delegating the blocking operations to a thread pool however in the longer term we may wish to
explore other storage options.

For scheduling, Advanced Python Scheduler is the only library evaluated that fits the
requirements for the CollecTor service. The native support for the asyncio event loop means
that no custom wrappers will be required. Both sched and schedule would be useful for other
tasks, but for CollecTor are too minimal.

For the plugin architecture, straight.plugin is the clear choice as the Twisted module is very
heavy in comparison without providing any clear advantages.

6 Prototype Implementation

A prototype of an application implementing the requirements described in §3 has been imple-
mented. This prototype is known as bushel and the source code and documentation can be
found online24.

The prototype makes use of asyncio for asynchronous I/O. Where using the stem li-
brary, any calls that would have blocked are delegated to an executor, currently a
concurrent.futures.ThreadPoolExecutor.

24The source code can be found at https://github.com/irl/bushel and the documentation at https://irl.
github.io/bushel.
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Figure 5: Overview of the architecture for the next-generation CollecTor.

The primary functionality of the relaydescs module is implemented in the
DirectoryScraper. This has functionality for recursively discovering documents that should
be archived.

The DirectoryCache provides an abstraction layer that forwards requests to a
DirectoryArchive or a DirectoryDownloader instance. When scraping the directory
documents are requested from the DirectoryCache. If they are not found, and a download is
successful, they are stored in the archive as a side-effect.

The DirectoryArchive provides methods to retrieve descriptors that have been archived
in the local file system. When parsing a consensus there are roughly 6500 server descrip-
tors referenced, and even more for a vote, which is well above the default number of max-
imum file descriptors for a process25. To prevent unbounded use of file descriptors, an
asyncio.BoundedSemaphore is used to limit concurrency.

7 Next Steps

• Based on the experience of implementing this prototype, a draft plugin API has been
specified in appendix B. The prototype will require some refactoring to fit this API and
then enable the implementation of the requirements set out in §4.

• Currently the prototype runs only as a command-line tool and not as a service with an
in-process scheduler. The scheduler would need to be integrated to the prototype before
it could be deployed.

25The default maximum file descriptors per process is 1024 on Debian 9 systems, and remains unchanged in
Debian 10 at time of writing.
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• The API may still require new functions or tweaks to existing functions and would need to
be formalised in the documentation. Before it can be considered complete an assessment
of suitability for each of the current CollecTor modules would need to be performed.

• In order to improve the archive rate for detached signatures, which currently must be
collected during a strict 5 minute interval, it would be useful to have the missing URL that
publishes the detached signature for the current consensus implemented in tor. The Tor
directory protocol could further be extended to support retrieval of recent consensuses,
votes and detached signatures and not just those for the current and next periods.

• For server descriptors our archive rate will not be 100% due to relays uploading new
descriptors twice between CollecTor polling the directory authorities. One possible
solution to this would be to provide a URL to retrieve all known descriptors, not just
the most recent. URLs could be provided to limit the descriptors to only those learned
within a given time period to help reduce duplicated downloads while maintaining a high
archive rate.

• The archive rate will need to be monitored, and to define thresholds for warning the
service operators the current CollecTor archives should be analyzed to find a baseline.
Any replacement needs to at least maintain this baseline, if not improve on it.

• Synchronization between CollecTor instances has not yet been considered. While the
current CollecTor implementation supports this through the CollecTor client interface,
it is suboptimal in terms of bandwidth usage and an improved design may help both
synchronization and for general client usage.

• Currently there are no efforts to provide trusted timestamps for documents containing
signatures that are archived by CollecTor, but in the future we could look into providing
this service.

• Finally, alternatives for document storage may be considered. This report assumed that a
new implementation would continue to implement the CollecTor File Structure Protocol
however this is not a strict requirement for the internal storage. Using the same structure
on top of ZFS, using a relational database, or using an object store could provide better
performance and reduce application complexity with some tasks delegated to the storage
provider.
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A Sample Detached Consensus Signature

1 consensus -digest 1CBD322788FFC841B0DB701C2942EE5750617CFF
valid -after 2018 -11 -15 19:00:00

3 fresh -until 2018 -11 -15 20:00:00
valid -until 2018 -11 -15 22:00:00

5 additional -digest microdesc sha256 476993
E797C51682E95ACEED12B2DD21588847E8E2FF7C49291E64207D8FED53

additional -signature microdesc sha256 D586D18309DED4CD6D57C18FDB97EFA96D330566
8A45BACC94A6023A90C24FBCD10520C1741828F7

7 -----BEGIN SIGNATURE -----
1c/vHIqlqdhS8HR+Lps3Tk+VHeJaQ5lL/NxIkARDpVMLhv6fHxCNGlXrKvd9S5KR

9 MvOzblmrVt3TV/iJTvOmMwHuziRjzrZeHpeeK81zQ/z6QGvheooaxa8jsYuANgA0
GK4agnsCI4JTKz /47 SGpIDjY3VtXbns58TUPYHHUQY82khLqWvj1nL5djWdnnm9l

11 yyU4od4mv6JJz9XdCNN+qDTzEA0QE10Y0lUV+K2Ipqplrb/zd9pzJS9GUf82cNOj
GYLvBMzuSr/aL0UIeQgiI0BRDw2MPqXd/KA04dOFCiqnDhKqh0PR6SMD3ulgxxhs

13 R0du41KYQC/eDqeRhxZF4g ==
-----END SIGNATURE -----

15 directory -signature D586D18309DED4CD6D57C18FDB97EFA96D330566 8
A45BACC94A6023A90C24FBCD10520C1741828F7

-----BEGIN SIGNATURE -----
17 ITaD0D5CmuobYi3G5LbuWmbIe5Vpt3o +5 d1XOtKaBhRxmC10c9WWMXCVJ7K6Ezb5

dzX6CsEKpop1+V8eqPRTyAZ7H4VvxNS5j6yPsgrMlahgQjcaOpxZY8p+dmzEluPe
19 E45/+ qlXoNfxwF4jv1t1+NLM0jIJRwHErNgJXzFRZ/q/MUZxn/LuN68mcBqzdLD4

L/D9bKNmvIAkcfTedk0x/zmwaXNMV6N9kN3kmUqeAvFLNOM/oP46ktj+B5Ch/2et
21 lFy4MEf1iHXKiLzq2uuCkMN2pfVtmga8j/BHE47ne5paMHnDwaTrEmBM2ws8n4mK

E/RAIUlD8COyEUImjcns6w ==
23 -----END SIGNATURE -----

Listing 5: Sample detached consensus signature
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B Initial Plugin API

The following documents a draft API to be implemented by plugins. These functions will be
called by the reference checker. While plugins may keep state internally, it is expected that any
state they do keep is not required to be persistent.

The latest version of this API will be found at https://irl.github.io/bushel/plugins.
html.

class DocumentIdentifier(doctype, subject, datetime, digests):

Represents a document that is expected to exist.

**Attributes:**

doctype

The "type" of the document.

subject

The subject of the document. This is usually a string containing
an opaque identifier. Examples include the fingerprint of a
relay for a server descriptor, or the hostname of an OnionPerf
vantage point.

datetime

A "datetime" related to the document. The exact meaning of this
will be document dependent. Example include the published time
for a server descriptor, or the valid-after time for a network
status consensus.

digests

A "dict" containing mappings of "DigestHash" to "tuple"s. Each
tuple contains a "str" representation of the digest
and a "stem.descriptor.DigestEncoding".
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class ExamplePlugin:

An example plugin for bushel.

expectations()

Returns:
A "list" of "DocumentIdentifier" for documents that are
expected to be available for fetching.

fetch(docid)

Fetches a document from a remote location.

Parameters:
**docid** (*DocumentIdentifier*) Identifier for the
document to be fetched.

parse(document)

Parses a retrieved document for any documents that are
referenced and should be fetched.

Parameters:
**document** (*Document*) A retrieved document.

Returns:
A "list" of "DocumentIdentifier" for documents that are
expected to be available for fetching.
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