
Exploring usable Path MTU in the Internet
Ana Custura

University of Aberdeen
Gorry Fairhurst

University of Aberdeen
Iain Learmonth

University of Aberdeen

Abstract—To optimise their transmission, Internet endpoints
need to know the largest size of packet they can send across
a specific Internet path, the Path Maximum Transmission Unit
(PMTU). This paper explores the PMTU size experienced across
the Internet core, wired and mobile edge networks.

Our results show that MSS Clamping has been widely deployed
in edge networks, and some webservers artificially reduce their
advertised MSS, both of which we expect help avoid PMTUD
failure for TCP. The maximum packet size used by a TCP
connection is also constrained by the acMSS. MSS Clamping
was observed in over 20% of edge networks tested. We find a
significant proportion of webservers that advertise a low MSS
can still be reached with a 1500 byte packet. We also find more
than half of IPv6 webservers do not attempt PMTUD and clamp
the MSS to 1280 bytes.

Furthermore, we see evidence of black-hole detection mech-
anisms implemented by over a quarter of IPv6 webservers and
almost 15% of IPv4 webservers. We also consider the implications
for UDP - which necessarily can not utilise MSS Clamping. The
paper provides useful input to the design of a robust PMTUD
method that can be appropriate for the growing volume of UDP-
based applications, by determining ICMP quotations can be used
as to verify sender authenticity.

I. INTRODUCTION

Internet standards define the Maximum Transmission Unit
(MTU) [1] as the largest size of packet that may be sent
across a link, without requiring fragmentation. Endpoints also
maintain a Path MTU (PMTU) representing the lowest MTU
along a path to a specific endpoint [2]. Since this value is not
immediately known to a sender, PMTU Discovery (PMTUD)
has been specified for IPv4 [3] [4] and IPv6 [5].

PMTUD provides a network layer mechanism to dynami-
cally determine the PMTU, utilising ICMP messages returned
by each router when it encounters a packet larger than its
local link MTU. For IPv4, an ICMP Type 3 (Destination
Unreachable) message is returned to the source of the packet,
with the code “fragmentation is needed and DF set” [3]
for packets that set the Don’t Fragment (DF) flag. While
IPv4 permits router fragmentation when the DF flag is not
set, fragmentation can only happen at the source for IPv6.
IPv6 sets a minimum MTU for IPv6 links of 1280 bytes
and requires nodes to implement PMTUD [5]. IPv6 PMTUD
relies on ICMP Packet Too Big (PTB) messages. For paths
which cannot support a 1280 byte MTU, fragmentation and
reassembly functions must be implemented at levels below
IPv6 [6].

This paper presents a survey of IPv4 and IPv6 PMTUD
behaviour and also seeks to identify which mechanisms are
used to make PMTUD more robust for TCP traffic. When
determining PMTUD behaviour, we use existing measurement

methodologies and tools [7] [8], providing an up-to-date
PMTUD behaviour report for both IPv4 and IPv6.

We include an in-depth exploration of server and client
advertised Maximum Segment Size (MSS), taking advantage
of existing measurement platforms, MONROE [9] and RIPE
Atlas [10], and using or extending existing tools Netalyzr [11]
and PATHspider [12].

We also look at ICMP quotation health and analyze a
large number of ICMP quotations from a previous large-
scale measurement campaign. These results provide important
insight to inform the design of new methods that can robustly
discover the PMTU for UDP traffic where there are currently
no standard methods to improve robustness. Such work is
particularly important with the growing volume of UDP-
based traffic following the emergence of the QUIC [13] web
transport protocol, and its current standardisation in the IETF
QUIC working group.

The following sections describe the background to our
study, including a survey of related work. We then present
our measurement campaigns using active packet probes and
the results, which we discuss in the context of recent work in
the IETF concerning IPv6 PMTUD. We also present the im-
plications of our results for Packetization Layer PMTUD [14]
and summarise our findings in the conclusion.

II. BACKGROUND TO PMTUD

While PMTUD provides a mechanism to discover the
minimum MTU along an Internet path, there are occasions
when it fails in ways that are difficult to diagnose [15].

Historically, the success of PMTUD has been impacted
by the way ICMP messages are handled in the network
[16] [17]. Firewalls that discard ICMP messages make this
method unreliable, as may routers and denial of service (DOS)
prevention tools that rate-limit ICMP messages.

Tunnel endpoints also need to interact with ICMP messages
to ensure they are correctly forwarded, as do devices that
provide load-balancing such as Equal Cost Multipath Routing
(ECMP) [18]. ECMP uses a hash of the connection 4-tuple.
In this case, ICMP may not be forwarded on the correct path,
as was the case for Cloudflare 2015 outage [19] where ICMP
messages were occasionally handled by the wrong server - not
the one initiating the PMTUD connection.

Blackholing can also result from inconsistent configuration.
A router will not generate ICMP PTB messages when the
router believes the local link can forward a packet, but the local
interface then fails to send it [17]. Despite these challenges,
past research [8] [7] has shown PMTUD success.



A. TCP Maximum Segment Size

TCP connections can utilise a mechanism to avoid the need
to use PMTUD. The TCP MSS is defined as the largest TCP
segment that can be accepted by the remote endpoint of a
TCP connection ([20] [21]). Receivers can advertise their MSS
using a TCP Option at connection setup. For example, an IPv4
link with a 1500 byte MTU and no other overhead, typically
results in a MSS of 1460 bytes. The received MSS dictates the
maximum size that the sender may use for the PMTU to the
endpoint. When no MSS is advertised, the default is assumed
to be 536 bytes.

Although the MSS Option was originally intended to be sent
end-to-end, some middleboxes adjust this TCP MSS Option
in an attempt to pre-empt or avoid PMTUD being triggered,
behaviour known as MSS Clamping. These devices reduce
the advertised MSS to take into account the actual MSS
they expect to experience along the path. For instance, a
tunnel could reduce the MSS to account for the additional
encapsulation headers that it adds. This technique is widely
used by home broadband routers, e.g. when supporting PPPoE.
[22] suggests there is also evidence that some middleboxes
pro-actively reduce the MSS, to account for overhead that may
commonly be added elsewhere on the path. Similarly, a server
or front-end middlebox may advertise a low MSS to clients
behind tunnels, or clear the IPv4 DF flag when sending large
packets.

PMTUD can be extended to provide protection from black-
holing. to discover the PMTU by the transport protocol (pack-
etization layer) using PLPMTUD [14]. This works by probing
the path with increasingly large packets to determine a usable
PMTU. When a probe fails, the packet size is lowered, and
new probes sent until the packet size converges on the PMTU.
This algorithm can be used alongside PMTUD to detect ICMP
black-holes, or by itself to determine the PMTU. Although
specified in 2007, more than 10 years later PLPMTUD is still
disabled by default in the Linux kernel, and has only been
added in 2014 to FreeBSD.

III. RELATED WORK

A large scale passive-measurement paper [22] from 2011
used packet traces to study IPv4 TCP advertised MSS. It
found a trend towards servers advertising values smaller than
1460 and attributes this to servers compensating for tunnel
overheads. They found an MSS of 1460 accounted for almost
half of the observed advertisements. They also noted that
advertised MSS is not a reliable indicator of the MSS that
will be used by a sender.

Our work uses active probes to collect the advertised MSS
from a large number of clients and webservers. We survey
webservers corresponding to the entire Cisco top 1 Million
domains, and clients from different types of edge networks
- wired, wireless and mobile and differentiate between the
MSS advertised in each case. We include data on the MSS
advertised by IPv6 servers (absent in [22]). We also analyze
how the advertised MSS is used as a mechanism to prevent
PMTUD failure.

TABLE I
EXPERIMENTS AND DATASETS

Purpose Tool used Dataset Name Date
Collect server MSS PATHspider A.1 ”PATHspider” Jan 2018
Validate server MSS Ping A.2 ”Ping” Feb 2018
Collect wireless/mobile
client MSS

Pathtrace B.1 ”MONROE” Dec 2016

Collect wired edge client
MSS

RIPE Atlas
Traceroute

B.2 ”RIPE” Jan 2018

Explore server PMTUD Scamper C.1 ”Scamper” Jan 2018
Explore edge PMTUD Netalyzr

Traceroute
C.2 ”Netalyzr” Dec 2017

Inspect ICMP quotations Pathtrace D ”ICMP” Jan 2017

A large measurement study of PMTUD behaviour using
Scamper [7], found that at least 80% of the tested IPv4 and
IPv6 webservers took the correct action when receiving a PTB
message. The study found that 10% of webservers only sent
packets of size 1380 bytes and advertised an MSS of 1380
bytes, and that these were more likely to fail at PMTUD.
Their paper also tested 910 IPv6 targets (out of only 1027
IPv6 hosts in the Alexa Topsites list at the time of the study).

PLPMTUD and other methods for black-hole detection
employed by Linux, MacOS and Windows are also outlined in
[7], but their data shows no evidence of these. We contribute
a refresh on their study using the same methodology, for both
IPv4 and IPv6. Since their study, IPv6 adoption has increased,
and our paper uses Scamper, version 20171204, to test 4,324
unique IPv6 hosts in the Cisco Umbrella top 1 Million list.
We also evaluate PMTUD behaviour in combination with
measurement of the TCP advertised MSS. The results are
interpreted based on an understanding of recent changes in
link and IP technologies.

A study [23] of ICMP quotations collected with traceroute-
style measurements looked at instances where quotations did
not match the sent probe. They found that a very small number
(26) of routers inserted an MSS option in-line with the TCP
header and asserted that this was added as a workaround for
paths with broken PMTUD. They also observed the length
of the quoted packet and found that the majority of routers
(87.5%) only quote the first 28 bytes of the probe packet.
We repeat the methodology in [23] on 20,000 ICMP and
ICMPv6 quotations. Our contribution examines whether the
ICMP messages triggered by routers in response to packets
too large to forward can be used to verify ICMP sender
authenticity.

IV. EXPERIMENT DESIGN

Our paper employs several tools, platforms and experiments
to explore various aspects of PMTUD. Table I presents a
summary of the used tools, the purpose and names of each
resulting dataset, as well as the month when each measurement
was finished.

To collect advertised MSS for servers in the Internet core,
we used PATHspider, a tool for A/B path transparency testing.
This was used to send an HTTP request to a target and collect
the advertised MSS on the return path. We tested the Cisco



Umbrella top 1 million1 in December 2017 from the Janet2

academic network (Dataset A.1, “PATHspider”).
For the same targets, an ICMP ping test subsequently

determined whether or not the target chooses its advertised
MSS because of a MTU constraint, or sets a lower MSS
(presumably expecting to reduce the likelihood of black-
holing). This resulted in Dataset A.2, “Ping”.

We explored MSS in the wired edge by measuring the
advertised MSS from over 3,000 RIPE Atlas [10] probes
across a range of access network technologies (Dataset B.1,
“RIPE”).

We also analyse the MSS in the mobile edge. This used
data already collected using Pathtrace in February 2017 [24]
for clients in mobile edge networks. The clients measured
the European MONROE [9] platform providing over 120
vantage points spanning 12 mobile providers and several edge
networks. Probes were sent using traceroute to a selection of
1000 webservers. We analyze the advertised MSS along the
path to the target servers as returned in ICMP quoted packets.
The results constitute Dataset B.2, “MONROE”.

To survey PMTUD behaviour, we perform tests using
Scamper [25], from a server in the Janet academic network.
We observe responses to HTTP GET requests towards 60,000
domains using both IPv4 and IPv6 addresses. The Scamper
methodology [8] takes the MTU to be tested as a parameter.
If the HTTP response of the target is larger than the tested
MTU and has the DF set, Scamper sends an ICMP Destination
Unreachable or PTB message towards the target. If the target
reduces the size of its packets, we infer PMTUD was suc-
cessful. If no response, we allow four retransmissions before
concluding that PMTUD fails. Scamper also records whether
the tested server retransmits IPv4 packets clearing the DF flag
or if the observed packets did not have the DF flag set. These
results are found in Dataset C.1, “Scamper”.

To complement the data collected for the wired edge,
PMTUD from the mobile edge also explored measurements
from 50 vantage points using both traceroute and Netalyzr [11]
- Dataset C.2, “Netalyzr”.

Finally, in Dataset D, “ICMP”, we explored the quotations
in ICMP messages returned by routers. These messages are
required to return (quote) the packets that triggered each
message. This was explored to evaluate whether quotations
can be used to verify the authenticity of an ICMP message.
We dissected ICMP and ICMPv6 Time Exceeded messages
collected from a previous traceroute-style measurement cam-
paign towards 100,000 webservers. Although these messages
were returned due to a packet′s TTL/Hop-count reaching zero,
we expect the same quotation method to be used for all ICMP
messages and therefore expect the same result when PTB
messages are generated.

For all tests, Internet names were resolved using Hellfire3.
When a name resolved to more than one address, one IPv4 and

1https://umbrella.cisco.com/blog/2016/12/14/cisco-umbrella-1-million/
2https://www.jisc.ac.uk/janet
3https://github.com/irl/hellfire

Fig. 1. Avertised MSS (in bytes) on TCP SYN/ACK server response seen at
Janet academic network

one IPv6 addresses were selected to diversify the sampling.
The Janet academic network has been tested previously and is
known to not modify TCP options or IP headers.

V. RESULTS

A. Server advertised MSS

This section considers results in Dataset A.1, “PATHspider”,
and A.2, “Ping”. Out of the total of 405,623 analyzed IPv4
servers in Dataset A.1, over 80% (333,684, 82.25%) report
an MSS of 1460 bytes, corresponding to an MTU of 1500
bytes. The next most common MSS values are 1380 (5%) and
1432 bytes (2.4%). Out of 107,207 IPv6 targets, around 60%
advertised the minimum IPv6 MSS, 1220, and only 33.5%
advertised a default MSS of 1440 bytes. The most common
value after that is 1410, 3.5% of the total. Advertised MSS
values between 1200 and 1500 bytes are further presented in
Figure 1.

36 tests reported the maximum possible MTU, with a value
of 65k. This advertised MSS value was also observed in [22]
and deemed impractical, as at the time there was no technology
supporting segments of that size. We traced our results to a
cloud provider using Infiniband [26], this link-layer technology
can use jumbo frames of up to 65k [27] in a data centre.

For Dataset A.2, we conducted a ping test on 295,000
webservers from Dataset A.1, to determine how many targets
are reachable with a ping packet equal to 1500 bytes. We also
sent a control probe with the size based on the advertised MSS.
The reason our control probe is not a 64 byte ping is that we
found many webservers to firewall large ICMP packets.



TABLE II
PING EXPERIMENT RESULTS n=295,488

Behaviour hosts %
No response to ping from Server 101259 34.2%

Both probes failed with PTB message 657 0.2%
Both probes succeeded 190219 64.3%
1500 byte probe failed 2378 0.8%

1500 byte probe failed with PTB message 568 0.2%

TABLE III
SUMMARY FOR MSS OPTIONS SEEN ON THE RETURN PATH

n = 4088
hosts % Advertised MSS

323 8% 1400 bytes
323 8% 1410 bytes
174 4.2% 1420 bytes

68 1.6% 1452 bytes

Out of the total, two-thirds (65.8%) of targets were reach-
able with our probes. Out of the reachable servers, 98.4% of
servers responded to a ping of 1500 bytes, indicating the path
supported this PMTU. For 1.2% which did not, we saw an
ICMP PTB message in 24% of cases, as outlined in Table II.
Out of the subset which advertised an MSS lower than 1460
(34,920), 93% were reachable with a probe of 1500 bytes.

We found 657 or 0.3% of the total reachable servers
failed both probes with PTB messages, which indicates that
respecting the server advertised MSS results in packets too big
for those paths.

B. MSS seen from mobile and wireless clients

Dataset B.1, “MONROE”, consists of traceroute-style mea-
surements collected from the MONROE [9] platform. This
platform contains nodes with a mixture of cellular and wireless
edge interfaces.

We used the default interface MTU of MONROE nodes
(1500 bytes) and did not send any additional TCP options.
Our tests observed a total of 888 (21%) hops that returned a
quotation with an MSS option, evidence of MSS Clamping in
the mobile and edge networks. In comparison, only two replies
in the Internet core dataset indicated rewriting of the MSS by
a device on the path.

Table III shows a low number of paths clamped the MSS to
1452, the result of including some wireless edge networks in
the dataset. A MONROE node may have up to three mobile
interfaces and up to one wireless interface, resulting in an MSS
of 1452. This is a common MSS advertised by routers behind
a PPPoE link. 1452 is also a prominent value advertised in
[22], where it is also attributed to DSL subcribers behind a
PPPoE link.

The other values encountered suggest the networks have
been configured to accommodate a sizeable encapsulation
overhead and perform MSS Clamping to avoid fragmentation
inside a tunnel. We sent 1500 byte UDP probes with the DF
flag set on ten of the mobile paths that were found to insert an
MSS option. These packets traversed the network and arrived
at our server, even when the probe size was larger than the

TABLE IV
INSERTED MSS OPTIONS BY MOBILE NETWORK, n = 10 paths

Network Inserted MSS option
Telenor Norway 1410 bytes

Telia Sweden 1400 bytes
Vodafone Italy 1400 bytes

Wind Italy 1420 bytes

Fig. 2. Observed MSS Values for RIPE Atlas test

MSS, as validated in Section V-D. For these 10 paths, we also
sought to determine which mobile network inserted the MSS
option. We found a variety of networks, displayed in Table IV.

C. MSS seen from the wired edge

To evaluate the wired edge, we performed a TCP traceroute
from 3000 RIPE Atlas probes towards a server controlled
by the authors in the Janet academic network (Dataset B.2,
“RIPE”). When performing TCP traceroute tests, RIPE Atlas
probes send a TCP SYN packet with no options. Our web-
server advertises an MSS of 1460 when replying. RIPE Atlas
allows us to observe the MSS received from our server over
the return path. At the same time, we capture the MSS that
was advertised by the probes. This allows us to infer whether
MSS manipulations in the path are symmetric.

4.8% of the sent probes arrive at our server carrying an MSS
option. This option must have been inserted by a middlebox on
the path. The observed MSS values are presented in Figure 2.

Devices on three of the paths had set the MSS to over 1460,
which, if used, would exceed the MTU of standard Ethernet.
Most paths clamped the MSS to 1452 bytes (Ethernet over
PPPoE encapsulation) or to 1460 bytes. We isolated the paths
for which this happens, and looked at the corresponding MSS
seen by the probe. We found the change to be symmetric in
88% (140) of cases, implying middleboxes perform the same
change bidirectionally.

Significantly more (23% or 764) of the MSS values received
by the probes differ from the value that was sent. This suggests
that middleboxes are more likely to interfere with an MSS
value only if it exists. The most frequent change is to set
the MSS to 1452 (44%), followed by 1412 (9%) and changes
range between 536 and 9176 bytes (!).



D. MTU in the Internet

We analyzed PMTUD behaviour for a random 60,000
domains chosen from the Cisco Umbrella top 100,000, in
dataset C.1, “Scamper”. We first resolved domain names to
IP addresses, and selected the first IPv4 and IPv6 addresses
as targets for a Scamper PMTUD test using the domain name
as the URL to test with HTTPS. Where the same IP address
appeared more than once in the list, the test result was only
counted one time.

The test MTU values were 1420 and 576 bytes and in
both cases we advertised an MSS of 1460. The test was then
repeated, but filtering the local ICMP PTB messages, using the
‘blackhole’ option supplied with the tool. Filtering prevents
classical PMTUD from detecting the lower MTU, allowing us
to determine whether some other PMTU method was being
used (such as PLPMTUD, or black-hole detection).

We exclude from our results cases where TCP did not
connect, there was no data received from the server, or the
received packets were smaller than the tested MTU (around
20% of the total tested). Some webservers may reset the
connection due to SNI mismatch, and not all domains in the
Top 1M list may point to webservers.

We observed that around 12% of targets did not set the DF
flag in packets that they sent. This shows that these endpoint
are not configured to perform PMTUD. For IPv4, almost 67%
of the remaining set succeeded in performing PMTUD. 16%
failed to complete the connection when the test MTU was
1420. The rate of success further reduces when the test MTU
was 576, resulting in almost 20% failure.

For an MTU of 1420, 2.7% IPv4 servers did not reduce their
sending PMTU, but instead cleared the DF flag on subsequent
packets. A slightly higher percentage (4.1%) of servers do
the same for an MTU of 576. When the bottleneck did not
generate ICMP messages, the PMTU success drops to 8.2%,
with 67.4% failing to reduce their packet size to a level below
the MTU tested and not completing the test. We saw no servers
that cleared the DF flag as a response to a possible ICMP
black-hole. IPv4 behaviour is detailed in Table V.

For IPv6, we set an MTU of 1280. For more than half the
results, replies of exactly 1280 bytes size were received, which
were not sufficiently large for a PTB message to be sent. These
servers were configured to use the minimum IPv6 MTU. For
the remaining servers, the test with this MTU succeeded for
95% of tests. When the bottleneck did not generate ICMP
messages, 32% of servers still reduced their packet size and
successfully completed the web transfer with the test MTU.
IPv6 behaviour is detailed in Table VI. Table VII presents a
side-by-side comparison with Luckie et al.[7] for the same
tested MTU.

Futher to the Internet core experiment, we used traceroute
PMTUD and Netalyzr in the mobile edge to probe Internet
paths to remote webservers using 16 mobile operators from
over 40 vantage points within the MONROE platform (Dataset
C.2). Both experiments consistently reported a PMTU of 1500
bytes, the default Ethernet MTU.

TABLE V
IPV4 PMTUD BEHAVIOUR

1420 MTU 576 MTU 576 MTU Black-hole
PMTUD Too Small 7.45% 3.7% 0.95%
PMTUD Success 68.2% 63.9% 8.2%
PMTUD Failure 16.4% 19.5% 67.4%
No DF set 12.5% 12.3% 15.2%
Clear DF 2.7% 4.1% NIL

TABLE VI
IPV6 PMTUD BEHAVIOUR

1280 MTU 1280 MTU Black-hole
PMTUD Too Small 59.6% 53.1%
PMTUD Success 95.5% 32%
PMTUD Failure 4.5% 67.9%

E. ICMP quotation dissection

A recent update to the IPv6 base specifications [5] noted the
need for methods to validate ICMP PTB messages, to avoid
vulnerabilities to off-path denial of service attack. To generate
ICMP packets with quotations, we used probe packets with
an engineered TTL, which triggered an ICMP response from
routers along the path. Our goal was to determine if the quoted
packet in a received ICMP could be used to validate that the
message was sent in response to a packet from the sender.

For network tests across the Internet core we recorded a total
of 125,212 ICMP and ICMPv6 replies (Dataset D, “ICMP”).
For the purpose of this analysis we consider replies from
unique IP addresses, 14257 in total. For the mobile edge, a
total of 4,772 ICMP type 11 replies originating from unique
IP addresses were analyzed.

We assess a reply as healthy if:
1) the quoted payload is at least 28 bytes in length
2) the quoted payload matches the original probe on the

source address, destination address, source port, desti-
nation port and transport protocol

Most quotations were observed to have the minimum per-
mitted size by RFC792, (64.5%) for IPv4 and (89.8%) for
IPv6. For both IPv4 and IPv6, the second most popular choice
(19.4% and 9.8%) is to quote the original packet including
ICMP MPLS extensions [28] (while ICMP TTL exceeded in
transit messages may be extended, ICMP PTB must not [29]).

TABLE VII
PMTUD BEHAVIOUR COMPARISON WITH LUCKIE ET AL. 2010

IPv6 1280 MTU IPv4 576 MTU
2010 [7] 2018 2010 [7] 2018

No TCP connection N/A 6.9% 1.6% 14%
Early TCP reset 0.1% 0.2% 0.3% 0.6%
No data packets 0.4% 1.1% 0.2% 1.1%
Data packets too small 17.2% 59.6% 3.9% 3.7%
DF not set N/A N/A 2.2% 9.1%
Clear DF after PTB N/A N/A 4.5% 3.3%
PMTUD Success 80% 30.4% 78% 51%
PMTUD Failure 2.2% 1.4% 9.4% 15.5%

Side-by-side results for the same tested MTU. 2010 data from [7], with
IPv6 results from Amsterdam and IPv4 results from Hamilton, NZ.



TABLE VIII
SUMMARY FOR ICMP QUOTED PAYLOAD LENGTHS, CORE VS. MOBILE

Core Mobile Size in bytes and description
n = 10169 n = 4398

hosts % hosts %
7075 69.5% 2887 65.4% 28 (minimum size for IPv4)
846 8.3% 103 2.3% 40 (original IPv4 packet size)
NA NA 72 1.6% 44 (original IPv4 packet w/4 bytes op-

tions)
0 0% 816 18.5% 68 (original IPv4 packet w/20 bytes

options)
1944 19.1% 390 8.9% 140 (quotation w/MPLS extensions)

301 3% 144 3.3% 144 (quotation w/MPLS extensions)

TABLE IX
SUMMARY FOR ICMP QUOTED PAYLOAD LENGTHS FOR IPV6

IPv6 Size in bytes and description
n = 4088

hosts %
3673 89.8% 60 (original IPv6 packet size)

12 0.3% 140 (quotation w/MPLS extensions)
388 9.5% 144 (quotation w/MPLS extensions)

15 0.3% 148 (quotation w/MPLS extensions)

We found no evidence of quotations smaller than the minimum
permitted size, which means all information required to match
a probe is returned. Data are presented in Tables VIII and IX.

In the Internet core dataset, we found a total of 12 replies
for which the quoted transport payload did not match the
probe that was sent. These replies correctly quote source and
destination address, but include corrupted transport payloads
- which could not be used to validate port information in the
quoted packet. We considered all other replies from these IP
addresses and found that, with one exception, they consistently
return broken ICMP quotations. Furthermore, this only appears
on the paths from three of the 8 vantage points tested.
However, due to the nature of the payload this does not appear
to be due to a decapsulation issue. No broken payloads were
found in mobile edge tests.

VI. DISCUSSION

This section provides a discussion of the reported results
from three perspectives.

A. What PMTU can be expected?

We found that 99% of MSS values seen client-side, for
both IPv4 and IPv6 range between 1200 and 1460 bytes
inclusive. For server MSS advertisements, the same figure
is 98.95%. Including values from 1000 bytes do not appear
to offer additional benefit, the percentages remain the same
(99.1%, 98.96%). The most commonly advertised IPv4 MSS
is still 1460 bytes, experienced to a larger extent than found
in [22], although there is still a trend towards advertising
smaller values (as noted later). We found 1% of IPv4 and
IPv6 webservers deploy MTUs larger than 1500 bytes, with
notable values corresponding to Ethernet Jumbo frames (8k)
and other link technologies, such as Infiniband (65k).

Our results also show a wide range of deployed link MTUs.
In many cases the size of PMTU can be much higher than

the default MTU imposed by Ethernet, and there remains the
potential to increase the PMTU as this deployment increases.
However, at the same time, sending endpoints need a way to
confirm a workable PMTU for the paths they use.

Our results in Section V-D show a large proportion of
IPv6 webservers, over 50%, that do not attempt to send TCP
segments larger than 1280 bytes. The first peak of Figure 1
also shows up to 60% of webservers advertise an MSS value
of 1220 bytes. This implies more than half of the tested IPv6
hosts are configured to advertise a MSS corresponding to the
minimum IPv6 MTU. While this alleviates a sending endpoint
from the need to utilise PMTUD, it also limits the efficiency
of transmission.

B. What potential is there for PMTUD to raise the PMTU?

Classical PMTUD is a standard IETF-defined method for
determining an effective PMTU for IPv4 and IPv6. It can
probe paths regularly to detect PMTU changes and although it
usually results in reducing the MTU for a given path (including
black-hole detection), the same mechanism can also raise it.

95% tested IPv6 servers succeed in performing PMTUD to
reduce the PMTU, when they receive the appropriate ICMP
PTB messages. Our IPv6 results are consistent with the results
found by [7]. Both results are presented in Table VI.

PMTUD was also found to be successful in adjusting the
PMTU for up to 68% of IPv4 servers tested (see Section V-D).
However, the method fails for up to 20% of tests. Comparing
our results in Section V-D to [7], our tests experienced almost
twice as much PMTUD failure failure for IPv4. 9.1% of IPv4
endpoints were configured not to even attempt PMTUD (i.e.,
did not set the DF flag on packets they sent). This is almost
five times more endpoints that reported by [7]. Results are
presented for comparison in Table VII.

[5] calls for validating the source of PTB messages using
the quoted packet information, as a way of reducing the risk
from off-path denial of service attacks. Our results indicate that
validation is feasible, but we note that this requires an endpoint
stack implementing PMTUD to access the port information to
validate the quoted packet.

For IPv6, a TCP endpoint can avoid PMTUD by advertising
an IPv6 MSS of 1220 bytes by configuring the minimum IPv6
MTU of 1280 on the host interface. We have seen evidence
of both in Section V-D and Figure 1. This advertises a lower
MSS than is actually supported by the part of the path they
control. This practice has also been reported by others [19].
Our results in Section V-A suggest although 93% of servers
advertise an MSS lower than 1500 bytes, they were were still
reachable with a packet of size 1500 bytes.

We found a popular choice (Figure 1) was to advertise an
MSS of 1380 bytes. This corresponds to the size using IPv4
ESP in Tunnel Mode [30]. Our results are consistent with
reports of middleboxes setting the default advertised MSS to
1380 (e.g. Citrix CloudBridge WAN traffic accelerators [31],
Cisco ASA appliances [32]).

There is also evidence of rewriting the TCP MSS option by
middleboxes. MSS Clamping was observed for both mobile



and edge networks and we presented results showing MSS
Clamping in access networks. In some cases, this appeared to
be performed to avoid PMTUD failures, presumably because
of locally known links with a smaller MTU. In the case of
mobile networks, some middleboxes were also found to add
an MSS option reducing the MSS, even though the network
path actually supported an MTU of 1500 bytes.

In summary, the use of these mechanisms suggest manufac-
turers and network administrators do not trust PMTUD. While
MSS Clamping reduces the risk of segment sizes exceeding
the PMTU, it prevents endpoints that can support a larger MSS
from taking advantage of paths that are able to forward these
larger packets. MSS Clamping is also not without issues: we
found a number of misconfigured middleboxes which set the
MSS to a larger number than the network would support (see
Section V-C), which could lead to black-holing of segments
that then exceed the PMTU.

C. What are the prospects in using PLPMTUD to raise the
PMTU?

For PMTUD to succeed without the support of receiving
ICMP messages requires sending endpoints to deploy some
form of black-hole detection. 68% IPv6 and 76% IPv4 tested
webservers did not reduce their PMTU when a limiting link
MTU was connected via a router that was unable or unwilling
to return PTB messages to the sender.

On Windows platforms, PMTUD black-hole detection can
be enabled as a feature, but only for TCP traffic. It works by
reducing segment size to 536 bytes and setting the DF flag on
outgoing packets when no acknowledgement is received after
retransmission [33] [34]. Similar results could be achieved for
TCP by enabling PLPMTUD on Linux servers.

PLPMTUD provides another way to implement black-hole
detection for TCP. This is able to detect and respond to
black-holes. It also performs robust path probing to allow
senders to discover a larger PMTU, when permitted by the
receiver-advertised MSS, thus raising the MTU for a path.
The PLPMTUD implementation in Linux has had several
bugs [35]. Following patches in 2015, and from Linux Kernel
4.1, PLPMTUD starts the search from a default PMTU value
of 1024, previously 512 bytes. Increasing the base PMTU
value to 1200 could improve search times when probing for
an upper limit. The availability of data showing the achievable
PMTU is expected to be an important method in evolving
suitable probing algorithms for PLPMTUD.

We would encourage continued research to develop support
for PLPMTUD, since the robustness it provides is desirable
in the increasingly heterogenous Internet. However we also
note that the use of pre-emptive MSS Clamping (i.e. by boxes
that do not themselves have a MTU limit) is likely to result
in obstacle to detecting and using a larger PMTU for many
network paths.

UDP traffic represents an increasing volume of Internet
traffic. The volume and importance of this traffic is only set
to increase as QUIC is further deployed for web transport.
However, there is no standardised method to improve the

robustness of PMTUD for UDP traffic. Google data analysing
UDP traversal [36] suggests that up to 64% of access networks
fail to carry 1500 byte UDP packets with the DF flag set. This
means that some form of PMTUD is therefore desirable to
select an appropriate packet size. However, our results show
that it would be unwise to rely on classical PMTUD. Blackhole
detection mechanisms are primarily implemented for TCP.
Methods involving the setting of MSS options and the use
of MSS Clamping do not work for transports other than TCP.
Our results therefore suggest there could be a failure rate of
more than 19% for an MTU under 1500 bytes. In response to
these challenges, Datagram PLPMTUD is being designed [37].

VII. CONCLUSION AND NEXT STEPS

This paper provides new measurement data on the use
of PMTUD. It describes the PMTU values seen for current
Internet paths and the implications of receiver-advertised MSS
on the PMTU reached for TCP traffic. Our results are based on
active probing of network infrastructure from the wired edge,
mobile edge and from a core vantage point.

We found that more servers are not using PMTUD than
previously reported, and a considerable proportion already
employs ICMP black-hole detection mechanisms. We also
observed a range of methods being used by network adminis-
trators and stacks that seek to mitigate or avoid PMTUD failure
by adjusting the receiver-supplied MSS value. We observed an
increase in the numbers of IPv6 nodes that were configured
to advertise a MSS based on the minimum IPv6 MTU, rather
than their link MTU. This may also be an attempt to avoid the
implications of PMTUD failure. There was also evidence of
MSS Clamping in both the wired and mobile edge, particularly
by routers that we presume connect PPPoE links and in
middleboxes in the mobile network. Although successful in
avoiding the need for PMTUD, such MSS-based solutions are
only applicable to TCP.

There is also an interest in providing robust PMTUD for
the growing share of UDP traffic. We therefore explored the
implications on non-TCP traffic and the paper provides input to
the design of future robust techniques for datagram PMTUD.

VIII. ACKNOWLEDGEMENTS

This work is funded by the European Union’s Horizon 2020
research and innovation programme under grant agreement
No. 644399 (MONROE) through the Open Call. Additionally
this work was partially supported by the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No. 688421 (MAMI). The opinions expressed and
arguments employed reflect only the authors’ view. The Euro-
pean Commission is not responsible for any use that may be
made of that information.

REFERENCES

[1] R. Braden, “Requirements for Internet Hosts - Communication Layers,”
RFC 1122, Internet Engineering Task Force, Oct. 1989. [Online].
Available: http://www.ietf.org/rfc/rfc1122.txt

[2] C. A. Kent and J. C. Mogul, “Fragmentation considered harmful,”
SIGCOMM Comput. Commun. Rev., vol. 25, no. 1, pp. 75–87, Jan. 1995.



[3] J. Mogul and S. Deering, “Path MTU discovery,” RFC 1191,
Internet Engineering Task Force, Nov. 1990. [Online]. Available:
http://www.ietf.org/rfc/rfc1191.txt

[4] J. McCann, S. Deering, and J. Mogul, “Path MTU Discovery for IP
version 6,” RFC 1981, Internet Engineering Task Force, Aug. 1996.
[Online]. Available: http://www.ietf.org/rfc/rfc1981.txt

[5] J. McCann, S. E. Deering, J. Mogul, and R. M. Hinden, “Path MTU
Discovery for IP version 6,” RFC 8201, Jul. 2017. [Online]. Available:
https://rfc-editor.org/rfc/rfc8201.txt

[6] D. S. E. Deering and R. M. Hinden, “Internet Protocol, Version
6 (IPv6) Specification,” RFC 8200, Jul. 2017. [Online]. Available:
https://rfc-editor.org/rfc/rfc8200.txt

[7] M. Luckie and B. Stasiewicz, “Measuring Path MTU Discovery Be-
haviour,” in Proceedings of the 10th ACM SIGCOMM Conference on
Internet Measurement (IMC ’10). New York, NY, USA: ACM, 2010,
pp. 102–108.

[8] A. Medina, M. Allman, and S. Floyd, “Measuring interactions between
transport protocols and middleboxes,” in Proceedings of the 4th ACM
SIGCOMM Conference on Internet Measurement (IMC ’04). New York,
NY, USA: ACM, 2004, pp. 336–341.

[9] MONROE, “Measuring Mobile Broadband Networks in Europe,”
https://www.monroe-project.eu/.

[10] RIPE NCC Staff, “RIPE Atlas: A Global Internet Measurement Net-
work,” Internet Protocol Journal, vol. 18, no. 3, Sep 2015.

[11] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson, “Netalyzr: Illumi-
nating The Edge Network,” in Internet Measurement Conference (IMC),
2010.

[12] I. R. Learmonth, B. Trammell, M. Kühlewind, and G. Fairhurst,
“PATHspider: A tool for active measurement of path transparency,” in
Proceedings of the 2016 Applied Networking Research Workshop, July
2016, pp. 62–64.

[13] R. Hamilton, J. Iyengar, I. Swett, and A. Wilk, “QUIC: A UDP-
Based Secure and Reliable Transport for HTTP/2,” Internet Engineering
Task Force, Internet-Draft draft-hamilton-early-deployment-quic-00, Jul.
2016, work in Progress.

[14] R. Gellens, D. Singer, and P. Frojdh, “The Codecs Parameter for
”Bucket” Media Types,” RFC 4281, Internet Engineering Task Force,
Nov. 2005. [Online]. Available: http://www.ietf.org/rfc/rfc4281.txt

[15] K. Lahey, “TCP Problems with Path MTU Discovery,” RFC 2923,
Internet Engineering Task Force, Sep. 2000. [Online]. Available:
http://www.ietf.org/rfc/rfc2923.txt

[16] R. van den Berg and P. Dibowitz, “Over-Zealous Security Administra-
tors Are Breaking the Internet,” in Proceedings of the 16th USENIX
Conference on System Administration (LISA ’02). Berkeley, CA, USA:
USENIX Association, 2002, pp. 213–218.

[17] M. Luckie, K. Cho, and B. Owens, “Inferring and debugging path
MTU discovery failures,” in Proceedings of the 5th ACM SIGCOMM
Conference on Internet Measurement (IMC ’05). Berkeley, CA, USA:
USENIX Association, 2005, p. 17.

[18] C. Hopps, “Analysis of an Equal-Cost Multi-Path Algorithm,” RFC
2992, Internet Engineering Task Force, Nov. 2000. [Online]. Available:
http://www.ietf.org/rfc/rfc2992.txt

[19] M. Majkowski, “Path MTU discovery in practice,” Cloudflare Blog, May
2015, (https://blog.cloudflare.com/path-mtu-discovery-in-practice/).

[20] J. Postel, “The TCP Maximum Segment Size and Related Topics,” RFC
879, Internet Engineering Task Force, Nov. 1983. [Online]. Available:
http://www.ietf.org/rfc/rfc879.txt

[21] D. Borman, “TCP Options and Maximum Segment Size (MSS),” RFC

6691, Internet Engineering Task Force, Jul. 2012. [Online]. Available:
http://www.ietf.org/rfc/rfc6691.txt

[22] S. Alcock and R. Nelson, “An Analysis of TCP Maximum Seg-
ment Sizes,” https://wand.net.nz/sites/default/files/mss ict11.pdf, ac-
cessed 2018-01-24.

[23] D. Malone and M. Luckie, “Analysis of ICMP quotations,” in Passive
and Active Network Measurement, S. Uhlig, K. Papagiannaki, and
O. Bonaventure, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 228–232.

[24] A. Custura, G. Fairhurst, and A. Venne, “Exploring DSCP modification
pathologies in mobile edge networks,” in Proceedings of the 2017
IEEE/IFIP Workshop on Mobile Network Measurement, 6 2017.

[25] M. Luckie, “Scamper: A Scalable and Extensible Packet Prober for
Active Measurement of the Internet,” in Proceedings of the 10th ACM
SIGCOMM Conference on Internet Measurement (IMC ’10). New York,
NY, USA: ACM, 2010, pp. 239–245.

[26] V. Kashyap, “IP over InfiniBand: Connected Mode,” RFC 4755,
Internet Engineering Task Force, Dec. 2006. [Online]. Available:
http://www.ietf.org/rfc/rfc4755.txt

[27] Burleson Consulting, “Jumbo frames and RAC,” http://www.dba-
oracle.com/t rac tuning jumbo frames.htm.

[28] R. Bonica, D. Gan, D. Tappan, and C. Pignataro, “ICMP
Extensions for Multiprotocol Label Switching,” RFC 4950,
Internet Engineering Task Force, Aug. 2007. [Online]. Available:
http://www.ietf.org/rfc/rfc4950.txt

[29] ——, “Extended ICMP to Support Multi-Part Messages,” RFC 4884,
Internet Engineering Task Force, Apr. 2007. [Online]. Available:
http://www.ietf.org/rfc/rfc4884.txt

[30] S. Kent, “IP Encapsulating Security Payload (ESP),” RFC 4303,
Internet Engineering Task Force, Dec. 2005. [Online]. Available:
http://www.ietf.org/rfc/rfc4303.txt

[31] Citrix, “How to Find Maximum Size of IP Data Payload
that can Traverse WAN Environment Without Fragmentation,”
https://support.citrix.com/article/CTX115434.

[32] Cisco, “ASA Throughput and Connection Speed
Troubleshooting and Analyzing Packet Captures,”
https://www.cisco.com/c/en/us/support/docs/security/asa-5500-x-series-
next-generation-firewalls/113393-asa-troubleshoot-throughput-00.html.

[33] J. L. Carrell, E. Tittel, and J. Pyles, Guide to TCP/IP: IPv6 and IPv4.
Boston, MA: Cengage Learning, 2016.

[34] Microsoft TechNet, “Enable PMTU Discovery,”
https://technet.microsoft.com/en-us/library/cc957539.aspx.

[35] Stack Overflow, “TCP MAXSEG inaccurate? (was: Linux path MTU
probing not working on accepted socket if requested using set-
sockopt()),” https://stackoverflow.com/questions/36740276/tcp-maxseg-
inaccurate-was-linux-path-mtu-probing-not-working-on-accepted-s.

[36] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar, J. Bailey, J. Dorfman,
J. Roskind, J. Kulik, P. Westin, R. Tenneti, R. Shade, R. Hamilton,
V. Vasiliev, W.-T. Chang, and Z. Shi, “The QUIC Transport Protocol: De-
sign and Internet-Scale Deployment,” in Proceedings of the Conference
of the ACM Special Interest Group on Data Communication (SIGCOMM
’17). New York, NY, USA: ACM, 2017, pp. 183–196.

[37] G. Fairhurst, T. Jones, M. Txen, and I. Ruengeler,
“Packetization Layer Path MTU Discovery for Datagram
Transports,” Internet Engineering Task Force, Internet-Draft draft-
ietf-tsvwg-datagram-plpmtud-01, Mar. 2018, work in Progress.
[Online]. Available: https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-
datagram-plpmtud-01


