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Abbreviations

This section provides definitions of key terms and defines the abbreviations used in the remainder of the
report.

3G 3rd Generation
3GPP 3rd Generation Partnership Project
AccECN Accurate ECN
ACK Acknowledgement
ADU Application Data Unit
API Application Programming Interface
AQM Active Queue Management
ARED Adaptive Random Early Drop
BE Best Effort
BCP Best Current Practice
BDP Bandwidth Delay Product
BoF Birds-of-a-Feather
CAIDA Cooperative Association for Internet Data
Analysis
CC Congestion Control
CDF Cumulative Density Function
CDN Content Delivery Network
CE Congestion Experienced
CM Congestion Manager
CMT-SCTP Concurrent Multipath Transfer for
SCTP
CoDel Controlled Delay
CUBIC Cubic function congestion control
cwnd Congestion WiNDow
CWR Congestion Window Reduced
CWV Congestion Window Validation
DASH Dynamic Adaptive Streaming over HTTP
DC Data Center
DCLC Data Center Latency Control (IRTF re-
search group)
DCTCP Data Center TCP
DiffServ Differentiated Services
DNS Domain Name System
DOCSIS Data Over Cable Service Interface Spec-
ification
DoS Denial of Service

DRR Deficit Round Robin
DSCP Differentiated Services Code Point
DSL Digital Subscriber Line
E-UTRAN Evolved Universal Terrestrial Radio
Access Network
E2E End-to-End
ECE ECN-Echo
ECN Explicit Congestion Notification
ECT ECN-Capable Transport
eNB eNodeB, Evolved Node B (LTE Base-Station)
FIFO First-In First-Out
FQ Fair queuing
FQ-CoDel Flow queuing CoDel
FSE Flow State Exchange
FTP File Transfer Protocol
GB Gigabyte
GPRS General Packet Radio Service
GRE Generic Routing Encapsulation
GTP GPRS Tunnelling Protocol
GUTS Getting up to Speed
HAS HTTP Adaptive Streaming
HSS Hybrid Slow-Start
HTTP HyperText Transfer Protocol
HULL High-bandwidth Ultra Low Latency
ICMP Internet Control Message Protocol
IETF Internet Engineering Task Force
IP Internet Protocol
IRTF Internet Research Task Force
ISP Internet Service Provider
IW Initial Window
LAN Local Area Network
LEDBAT Low Extra Delay BAckground Trans-
port
LKM Loadable Kernel Module
LTE Long Term Evolution
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MAC Media Access Control
MB Megabyte
MPLS Multi Protocol Label Switching
MPTCP Multipath TCP
MSS Maximum Segment Size
NAT Network Address Translation
NS-2 Network Simulator 2
NV-GRE Network Virtualization using Generic
Routing Encapsulation
NVO Network Virtualization Overlay
NVP Non Validated Period
OWD One Way Delay
PCI Packet Congestion Indication
PCN Pre-Congestion Notification
PDI Packet Drop Indication
PDPC Packet Discard Prevention Counter
PDV Packet Delay Variation
PGW Packet Gateway
PIE Proportional Integral controller Enhanced
PLT Page Load Time
PSP PipeACK Sampling Period
QV Queue View
RCP Rate Control Protocol
RED Random Early Drop
RFC Request For Comments
RITE Reducing Internet Transport Latency End-
to-End
RMCAT RTP Media Congestion Avoidance Tech-
niques (IETF Working Group)
RT Real-Time
RTCWEB Real Time Collaboration on world
wide WEB (IETF Working Group)
RTO Retransmission Time Out

RTP Real-Time Protocol
RTT Round Trip Time
RW Restart Window
SACK Selective Acknowledgement
SAE System Architecture Evolution
SBD Shared Bottleneck Detection
SCTP Stream Control Transmission Protocol
SDO standards Development Organisation
SFQ Stochastic Fair Queuing
SGW Serving Gateway
SKB Socket Buffer
SQ Source Quench
SVD Singular Value Decomposition
SYN Synchronize packet
TFRC TCP Friendly Rate Control
TCP Transmission Control Protocol
TCP′ Paced and RTT Independent TCP (TCP-
PRIme)
TCPM TCP Maintenance (IETF Working Group)
TOS Type Of Service
TRILL TRansparent Interconnection of Lots of
Links
TSQ TCP Small Queue
UDP User Datagram Protocol
URG TCP Urgent flag
VCP Variable-structure congestion Control Proto-
col
VXLAN Virtual Extensible LAN
WiFi Wireless Fidelity
WG Working Group
WP Work Package
WRED Weighted Random Early Drop
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1 Introduction

RITE has investigated methods of removing the root causes of unnecessary latency over the Internet.
Whilst time-of-flight delay is inevitable, greater delays can result from interactions between transport
protocols and buffers. It is these concerns that RITE has tackled.
This document summarises the recommended use of parameters for low latency Internet communications,
both in end systems and in network equipment. The guidelines are offered to businesses and network
operators for general equipment parameters’ use, together with advice for application designers.
It identifies mechanisms and configuration parameters that can benefit the next generation low-latency
applications. It describes a recommended set of parameters based on analyses performed by the RITE
project and the results of experiments using mechanisms to reduce Internet end-to-end transport latency.
This advice includes consideration of how configuration recommendations interact and the need for any
joint parameter tuning. The document also offers advice on how to configure parameters depending upon
application traffic type. For more information on how different traffic types are affected by configuration
parameters, please see [1] and Deliverable 3.1.
RITE took a three-pronged approach to reducing latency — it included both end-system and network-
based approaches:

• End system – for example, we believe that protocol interactions cause extra delay and that protocols
can be optimised to improve latency with no, or limited, impact on throughput.

• Network – for example, we believe that large buffers throughout the network add to the end-to-end
delay, and that they can be reduced or even eliminated.

• The interaction between end-system and network elements — for instance, where end systems can
make latency-reduction decisions by utilising network hints.

On the basis of this work, RITE identified a number of areas within the network and end-systems where
improvements can be made regarding current best practices. The policy recommendations that form
the core of this deliverable are targeted at key stakeholders in the Internet communication ecosystem,
namely network operators, equipment vendors and software vendors.
The recommendations will assist each of the stakeholders in furthering the goals of reducing Internet
latency by providing recommendations for the enabling and tuning of technologies in the network and
at end-hosts. These functions are suggestions to address and attend the central issues that are identified
in RITE through the research work.
This report comprises:

• Design considerations for end-hosts

• Recommended configuration parameters for end-hosts

• Design considerations for networks

• Recommended configuration parameters for networks

• Future considerations from RITE research
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2 End-host

This section describes recommended design considerations and parameter configuration of end-hosts, to
reduce communication latency over the Internet. The design considerations and parameter configurations
are the results from analyses and experimentations done within the RITE project.

2.1 Design considerations

RITE has investigated the impact that common design choices have on the latency of end-host commu-
nication. In the coming section we summarise the impact of how the end-host accounts for transmitted
and received data.

2.1.1 Packet-based vs byte-based accounting

When measuring network delay it is common to use packet capture tools like libpcap. Such tools capture
the data as they leave the network stack and, consequently, do not include the waiting time from when
the application pushes data to the kernel until it is transmitted. There are many circumstances that
can contribute to the waiting time in the kernel (or the sojourn time) being much higher than what is
necessary. This section discusses the sojourn time in the Linux kernel for thin streams and the ambiguities
that arise for the TCP stack when having to do a hybrid between packet-based and byte-based accounting
for data segments in the kernel. For more information and a wider discussion, see the technical report [2].
There are two dominant strategies for implementing accounting in the network stack of operating systems:
1) Maximum Segment Size (MSS) based accounting and byte-based accounting. Linux, for example,
uses MSS-based accounting while FreeBSD uses byte-based accounting. For greedy traffic, MSS-based
accounting works well, but for thin streams having small packets with high inter-transmission times
(ITTs), MSS-based accounting opens up for a range of corner-cases and misunderstandings. This is
because a large number of small application segments may be sent to the network stack without accu-
mulating enough bytes to cross the 1 MSS limit, thus being registered in the network stack as a flow
that never tries to grow the congestion window.
To compare performance between existing solutions, we have measured the sojourn time and total latency
of flows that try to send more than one packet per RTT, but that will never generate enough data to
cross the 1 MSS limit in the send buffer. Figure 2.1 shows statistics of packets captured with libpcap as

Figure 2.1: Experiment with an application producing a segment of 50 Bytes every 10ms. Packets are
captured as the segments leave the network stack.
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the data leaves the network stack. The plot shows ITT and payload size statistics. If the packets were
sent immediately, all the packets should have a payload of 50 Bytes and an ITT of 10ms. The CDF,
however, shows that many segments are held back in the send buffer and combined before being sent,
thus adding to the total delay. When we inspect the sojourn time in figure 2.2, we can see that there is a

Figure 2.2: Send buffer sojourn time for the experiment with an application producing a segment of 50
Bytes every 10ms. Packets are captured as the segments leave the network stack.

big difference between recent Linux versions, as well as a noticable difference between FreeBSD and the
Linux stack. FreeBSD allows for immediate delivery of the small segments, while Linux tends to hold
them back to a larger degree. The reason why Linux behaves worse than FreeBSD for these scenarios is
the interaction between mechanisms doing MSS-based accounting and mechanisms that to some degree
try to do byte-based accounting.
Working on a hybrid between MSS-based and byte-based accounting makes it harder to handle cases
where the segment sizes are lower than 1 MSS, like we often can see in interactive traffic like sensor
networks, games, remote control and signal traffic. The delay added by holding segments back in the
send buffer is critical to the applications involved. Using byte-based accounting allows for a flexible
toolkit for dynamically adjusting the network stack’s handling of thin-streams. We therefore recommend
choosing byte-based accounting when designing transport mechanisms for thin streams. When perform-
ing measurements, it is also useful to instrument measurements of the send-buffer sojourn time, as it is
not obvious that segments are dispatched as soon as they are delivered from the application.

2.2 Configuration parameters

There are various mechanisms available in common operating systems that can be configured to reduce
transport latency. This section uses Linux to exemplify the recommendations for end-host configuration.
Linux is used as example because of its prevalence in the sever market and its relative ease of configura-
tion. However, not all mechanisms are available in the Linux mainline kernel. For mechanisms that are
not available, we point to available patches or describe the mechanism in general as well as parameter
tuning recommendations as a guideline to potential implementers.

2.2.1 Configuration of RITE mechanisms

While all mechanisms developed by RITE intend to reduce latency, they focus on different types of traffic.
Below we describe how to optimise short flows (RTO and TLP Restart), thin flows (Redundant Data
Bundling), bursty flows (New Congestion Window Validation) and general traffic (CAIA Delay Gradient
and TCP Alternative Backoff with ECN) for low latency.

RTO and TLP Restart Both TCP and SCTP use a retransmission timeout (RTO) timer [3, 4] as a
last resort for data loss recovery. The standardised way in which this timer is restarted often unnecessarily
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extends the loss recovery time by at least one round-trip time (RTT). The extended loss recovery time is
problematic as applications transmitting short/bursty time-sensitive traffic are often forced to use RTO-
based loss recovery due to limited traffic feedback. The RTO Restart (RTOR) mechanism [5] can be used
to remove this unnecessary delay. Further, Linux makes use of a non-standardised retransmission scheme
called Tail Loss Probe (TLP) [6] that is designed to tackle the slow loss recovery in the end of flows. Like
RTO, TLP also makes use of a timer that has the same restart problem. To mitigate this performance
problem, RITE has developed a restart strategy for TLP, which we call TLP Restart (TLPR), that
is similar to RTOR. Evaluations of the RTOR and TLPR [7] mechanisms show that they reduce loss
recovery latency and complement each other. Therefore RITE recommends to enable both mechanisms
on systems where they are available. The Linux mainline kernel does not incorporate these mechanisms,
but these are available for download from [8].

Assuming the kernel is built with the patch referenced above:
Linux commands for enabling RTOR and TLPR:
sudo sysctl net.ipv4.tcp_rto_restart=1
sudo sysctl net.ipv4.tcp_tlp_restart=1
Note: This is the default setting when building the kernel with the patch.

Redundant Data Bundling (RDB) Flows that are time-dependent and/or interactive often trans-
mit only a small amount of data with relatively large inter-packet interval times as compared to greedy
traffic. Examples of such applications are sensor networks, game servers and remote control. Redundant
data Bundling (RDB) is a sender-side only mechanism that tries to preempt the experience of packet
loss by redundantly bundling all unacknowledged data as long as the resulting segment does not surpass
1 Maximum Segment Size (MSS). This allows for effectively avoiding high retransmission delays without
sending any more packets into the network. Below, we have listed the recommended settings for the
most important tunable parameters of the mechanism based on the findings described in Opstad et al.
[9]. The Linux mainline kernel does not incorporate this mechanism, but it can be downloaded from [10].

Assuming the kernel is built with the patch referenced above:
Load the kernel module: "modprobe tcp_rdb"
To use RDB on a TCP connection, set the socket option TCP_THIN_RDB when setting up the socket.
Enable dynamic PIF limit with a min. inter-transmission time of 10ms.
sysctl -w net.ipv4.rdb.tcp_thin_dpif_lim=10
Limit RDB to bundling one old segment with each new:
sysctl -w net.ipv4.rdb.rdb_max_bundle_skbs=1

New Congestion Window Validation (new-CWV) RFC 7661 [11] specifies a mechanism to ad-
dress issues that arise when TCP is used for traffic that exhibit periods where the sending rate is limited
by the application rather than the congestion window. It provides an experimental update to TCP that
allows a TCP sender to restart quickly following a rate-limited interval. This method is expected to ben-
efit applications that send rate-limited traffic using TCP, while also providing an appropriate response
if congestion is experienced. This document obsoletes a previous mechanism described in [11]. While
this mechanism is not available in mainline Linux, it is available at [12].

Assuming the kernel is built with the patch referenced above:
Linux command for enabling new-CWV:
sudo sysctl net.ipv4.tcp_newcwv=1

CAIA Delay Gradient (CDG) CAIA Delay Gradient is a delay-based congestion control that takes
its backoff decisions based on estimates of whether the queue is growing or shrinking based on the gradient
of delay measurements within RTT periods. The mechanism includes a heuristic that switches the
congestion control to ”New Reno” when it detects that it is competing with other loss-based congestion
control mechanisms. The aim of this is to get the queueing delay benefits when alone on the bottleneck
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or competing with delay-based congestion controls, and still be able to achieve a fair throughput when
competing with loss-based congestion control. When turning off the loss competition heuristics, CDG
can be deployed as a less-than-best-effort congestion control. As of version 4.2, CDG is a part of the
mainline Linux kernel and can be directly applied.

The default configuration in the Linux kernel is the currently recommended settings.
Scavenger traffic (less-than-best-effort) should disable coexistence heuristics
using parameters use_shadow=0 and use_ineff=0.

2.2.2 Configuration of non-RITE mechanisms

The mechanisms listed in this section all affect low-latency communication, although some were not
designed for this purpose. Similarly to the configuration of the RITE mechanisms, we list them in
order of the traffic they mostly affect. TCP Fast Open is solely designed for short flows. Next, Nagle’s
algorithm, TLP and ER, thin-stream fast retransmissions and linear-backoff, and the initial window of
TCP all affect the latency of short and thin flows. The initial window also affects the latency of general
flows. ECN can reduce head-of-line blocking delay and has the potential to allow other mechanisms to
further reduce latency.

TCP Fast Open (TFO) RFC 7413 [13] describes an experimental TCP mechanism called TCP Fast
Open (TFO). TFO allows data to be carried in the SYN and SYN-ACK packets and consumed by the
receiving end during the initial connection handshake, and saves up to one full round-trip time (RTT)
compared to the standard TCP, which requires a three-way handshake (3WHS) to complete before data
can be exchanged. However, TFO deviates from the standard TCP semantics, since the data in the
SYN could be replayed to an application in some rare circumstances. Applications should not use TFO
unless they can tolerate this issue. RFC 7413 also describes further research and issues that need to be
explored before this can become recommendation for general Internet use.
Many web applications can benefit from TFO because the HTTP protocols provide the required mech-
anisms to protect from replay. In particular, TFO is designed to deliver data safely during connection
establishment without requiring the server to store per-client authentication information. A client ob-
tains a TFO cookie from the server when accessing the server for the first time. This cookie contains
encrypted information that authenticates the client. When the client wants to open a new connection to
the same server, it returns the cookie to the server by inserting it into the payload. The server recognises
the IP address of the client by deciphering the cookie, and therefore it can accept the TCP payload of
the SYN segment. This reduces the delay of initial connection establishment, which is non-negligible in
the overall web page download delay.

Linux command:
For servers, the change is very simple. Just set a socket option before issuing
the 'listen' system call on the socket:
int qlen = 5; // Incoming connections to queue
setsockopt(sfd, SOL_TCP, TCP_FASTOPEN, &qlen, sizeof(qlen));

For clients, the change is also simple, but more intrusive. For example, when
opening a new connection and performing a HTTP get request, replace calls to
connect() + send()/write() with:
sendto(sfd, data, data_len, MSG_FASTOPEN, (struct sockaddr *) &server_addr, addr_len);

Nagle’s algorithm is traditionally enabled by default for most operating systems. This is a mechanism
that trades latency for utilisation when a host sends small packets, by delaying the transmission of
small packets in order to bundle several packets together to a larger segment before sending. For any
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time-dependent application, delaying the sending of packets will reduce the quality of service. Our
recommendation is therefore to disable Nagle’s algorithm if the application is time-dependent.

Linux command:
When creating a new socket, add TCP_NODELAY as a socket option.

Tail Loss Probe (TLP) and Early Retransmit (ER) are the mechanisms that were made in
recognition of the fact that thin-streams and the tail of flows will not have the sufficient ACK feedback
to be able to trigger a fast retransmit. ER [14] will reduce the number of ACKs needed to trigger a
fast retransmission if the number of outstanding segment is less than four. TLP [6] tries to trigger loss
recovery by inducing additional selective ACKs at the receiver, even if the last segment is lost. TLP
transmits one probe segment after what is called a ”probe timeout” if the connection has outstanding
data but is otherwise idle. This segment will then (in accordance with ER) trigger a retransmission of
the outstanding segment without having to wait for a retransmission by timeout.

Linux command for enabling both TLP and ER:
sudo sysctl tcp_early_retrans=3
Note: This is the default setting in Linux, and may not need to be changed, usually.

Thin-stream fast retransmission If the need for low latency is larger for thin streams, it is possible
to enable a mechanism that statically retransmits after 1 duplicate ACK. This will reduce recovery
times compared to ER since the number of dupACKs needed to trigger a fast retransmission will not be
dynamically adjusted based on outstanding segments.

Linux command for enabling thin-stream fast retransmit:
sudo sysctl tcp_thin_dupack=1

Thin-stream linear backoff For a thin stream experiencing a large number of recoveries by timeout,
losing consecutive segments will lead to exponential backoff that massively increases the wait before
retransmitting. If your application is sensitive to high maximum delays, you should turn on a mechanism
that postpones the exponential factor until 6 retransmissions have been tried using a standard RTO.

Linux command for enabling thin-stream linear backoff:
sudo sysctl tcp_thin_linear_timeouts=1

Increased Initial Window RFC 6928 [15] proposes an experiment to increase the permitted TCP
initial window (IW) from between 2 and 4 segments as specified in RFC 3390 [16], to 10 segments
with a fall-back to the existing recommendation when performance issues are detected. It discusses the
motivation behind this increase, the advantages and disadvantages of the higher initial window, and
presents results from several large-scale experiments that show that the higher initial window improves
the overall performance of many web services without resulting in congestion collapse.
Although increasing the TCP initial window is a small change, it has considerable impact on web transfer
latency. According to the authors, this may be the only immediately applicable solution to remove the
incentive for web developers to use multiple concurrent connections to reduce the download latency.
However, results of large scale experiments also highlight the risks of congestion when using the method
with very low-speed links. Since the extent of such networks is unknown, an initial experimental phase
before the method could be universally deployed is recommended by the IETF.

Explicit Congestion Notification (ECN) [17] describes the benefits when applications use a trans-
port that enables Explicit Congestion Notification (ECN) [18]. It outlines the principal gains in terms
of increased throughput, reduced delay and other benefits when ECN is used over a network path that
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includes equipment that supports ECN-marking. It also discusses challenges for successful deployment
of ECN.
Internet transports, such as TCP and SCTP, are implemented in endpoints and designed to detect and
react to network congestion. Congestion may be detected by packet loss or, if ECN is enabled, by the
reception of a packet with a Congestion Experienced (CE)-marking in the IP header. ECN may also be
enabled by other transports: UDP applications that provide congestion control may enable ECN when
they are able to correctly process the ECN signals (e.g., ECN with RTP [19]).
An ECN-capable network device can signal incipient congestion (network queueing) at a point before
a transport experiences congestion loss or high queuing delay. The marking is generally performed as
the result of various AQM algorithms, where the exact combination of AQM/ECN algorithms does not
need to be known by the transport endpoints. Since ECN makes it possible for the network to signal the
presence of incipient congestion without incurring packet loss, it lets the network deliver some packets to
an application that would otherwise have been dropped if the application or transport did not support
ECN. This packet loss reduction is the most obvious benefit of ECN, but it is often relatively modest.
However, enabling ECN can also result in a number of beneficial side-effects for applications, some of
which may be much more significant than the immediate packet loss reduction from ECN-marking instead
of dropping packets. Several benefits reduce latency (e.g., reduced head-of-line blocking).
RITE, in collaboration with mPlane, has performed studies for the support for ECN in end-hosts and
in the network [20], in order to assess the marginal risk of enabling ECN by default in client end-hosts.
The Linux kernel has enabled “server-mode” ECN by default for some time, and so will negotiate ECN
when it is requested. Over half of tested webservers in the Alexa top 1 million list were capable of
negotiating ECN and less than half a percent of hosts showed ECN dependent connectivity failure when
an ECN negotiation was attempted. RITE has also performed a study of selected consumer networking
equipment, detailed in appendix A.
The marginal risk to enable ECN on client end-hosts has been shown to be minimal and therefore
RITE recommends that ECN can now be enabled by default on client end-hosts. There will still be a
small number of edge cases where ECN negotiation attempts may prevent TCP connections from being
established, and so the option to disable ECN negotiation should not be removed at this time.
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3 Network

This section describes recommended design considerations and parameter configuration of network com-
ponents to further low-latency communication over the Internet. The design considerations and param-
eter configurations are results from analysis and experimentation work done within the RITE project.

3.1 Design considerations

Traditionally, networking equipment has been designed to enable as high throughput as possible, not
considering latency problems caused by excessive buffering. RITE challenges this approach and has
investigated a number of alternative design considerations including AQM guidelines, the repurposing of
existing AQM equipment, ECN encapsulation guidelines and squared AQM.

3.1.1 AQM guidelines (IETF)

RITE has contributed to the production of RFC 7567 [21] on IETF Recommendations Regarding Active
Queue Management (BCP 197). This presents recommendations to the Internet community concerning
measures to improve and preserve Internet performance. There is a strong recommendation for testing,
standardization, and widespread deployment of active queue management (AQM) in network devices to
improve the performance of today’s Internet. It also urges a concerted effort of research, measurement,
and ultimate deployment of AQM mechanisms to protect the Internet from flows that are not sufficiently
responsive to congestion notification. This memo replaces the recommendations in RFC 2309. It also
explicitly obsoletes the recommendation that Random Early Detection (RED) be used as the default
AQM mechanism for the Internet. This is replaced by a detailed set of recommendations for selecting
an appropriate AQM algorithm.
It motivates the need for AQM, describes the combination of AQM and Multiple Queues, use of AQM
and Explicit Congestion Marking (ECN), AQM and Buffer Size, and research issues concerning manag-
ing aggressive flows. These mechanisms can be implemented in network devices on the path between
endpoints that include routers, switches, and other network middleboxes. The methods may also be
implemented in the networking stacks within endpoint devices that connect to the network.
The key recommendations are:

1. Network devices SHOULD implement some AQM mechanism to manage queue lengths, reduce
end-to-end latency, and avoid lock-out phenomena within the Internet.1

2. Deployed AQM algorithms SHOULD support Explicit Congestion Notification (ECN) as well as
loss to signal congestion to endpoints.

3. AQM algorithms SHOULD NOT require tuning of initial or configuration parameters in common
use cases.

4. AQM algorithms SHOULD respond to measured congestion, not application profiles. Other meth-
ods exist, e.g. Differentiated Services or Pre-Congestion Notification (PCN), that can be used to
differentiate and police classes of applications.

5. AQM algorithms SHOULD NOT interpret specific transport protocol behaviors.

6. Congestion control algorithms for transport protocols SHOULD maximize their use of available
capacity (when there is data to send) without incurring undue loss or undue round-trip delay.

7. Research, engineering, and measurement efforts are needed regarding the design of mechanisms to
deal with flows that are unresponsive to congestion notification or are responsive, but are more
aggressive than present TCP.

1In some situations tail drop allows a single connection of a few flows to monopolize the queue space, thereby starving
other connections, preventing them from getting room in the queue.
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3.1.2 Repurposing the existing Active Queue Management (AQM) equipment

Autotuning RED Hardware for Link Rate Changes
A considerable range of network equipment already provides support for Active Queue Management
(AQM), typically in the form of an implementation of the Random Early Detection (RED) algorithm [22].
RED has often not been turned on by network operators, because it is renowned for being hard to
configure correctly. One reason is that the queue thresholds of RED are defined in bytes so they have
to be reconfigured for different link rates. For instance, if a RED threshold is configured at 60KB for a
link rate of 10Mb/s it has to be scaled up to 600KB for a link rate of 100Mb/s.
More modern AQMs such as PIE [23] or fq_CoDel [24] measure the queue in time, which makes them
insensitive to changes in link rate. Many equipment designers believe that they should implement one
of these new algorithms, to make their AQM easier to manage. However AQM algorithms are often
implemented in hardware, so this can involve considerable development expense and upheaval. Further,
there is little performance difference between different AQMs—the mere existence of any AQM at all
gives most of the benefit compared to no AQM.
Therefore, where RED hardware already exists, rather than embark on a complete hardware reimplemen-
tation, we recommend adding a management harness around the existing hardware. Then the benefits
of AQM can be made available rapidly to all existing users, without having to wait for the next round
of hardware purchases.
This management harness should capture any change to the link rate and automatically reconfigure all
the RED parameters so that they stay constant when measured in time units, even though internally
they are defined in byte units. There are two possible approaches to deployment:

• It could be implemented by the network operator in its management system. For instance, many
operators of Digital Subscriber Line (DSL) access networks arrange for their DSL access multiplexer
(DSLAM) to signal any change of line rate to the Operational Support System (OSS). In turn the
OSS signals the change to the relevant Broadband Network Gateway (BNG) and reconfigures the
drain rate of the packet shaper for the relevant line to just less than the new access line rate, so that
the downstream bottleneck is always in the BNG. If the BNG is configured to operate the RED
algorithm within the queue(s) feeding this shaper, the management system could simultaneously
issue reconfiguration commands to scale the RED parameters.

• It could be implemented by the equipment vendor or chipset supplier as software encapsulating
the RED hardware. For instance, this might be appropriate in a residential DSL or cable modem,
so that the RED algorithm being applied to upstream traffic would automatically reconfigure to
match the line rate.

This management harness approach is only recommended where the line rate changes infrequently. For
continual rapid link rate changes, e.g. in IEEE 802.11 WiFi, the implementation needs to integrate
measurement of queuing time, to avoid continual parameter changes that are not coordinated with the
state of the queue(s).
Note that RED has at least 4 parameters, and at least 3 of them should be related to the link rate:

• min_th, the minimum threshold queue length;

• max_th, the maximum threshold queue length (often defined as a multiple of min_th anyway);

• w_q or 2exponential_weighting_constant, the constant of the exponentially weighted moving average
(EWMA) of queue length.

min_th and max_th should be scaled proportionate to link-rate. How to scale w_q depends on the
implementation. If w_q or or 2exponential_weighting_constant count in packets, they should also scale
proportionate to link rate, so that they represent the same amount of time (assuming the distribution of
packet sizes is unchanged). Of course, the value of exponential_weighting_constant will scale with
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the log2 of link-rate, because it is an exponent. For some hardware, the EWMA constant is defined in
time units, in which case it should be invariant with link rate.

Allowing Distinct ECN configuration within Existing AQMs
Where ECN is supported by an existing AQM, previous advice has been to configure the ECN side of
any AQM algorithm with identical parameters to the non-ECN side. The RITE project and others have
shown that ECN has considerably more potential if its behaviour is not tied to loss behaviour, whether
in the network [25] on the host [26] or both [27, 28].
Where the ECN behaviour is significantly different, a distinct identifier is needed for the packets. How-
ever, it has been shown that at least the burst tolerance in an AQM can be removed (or significantly
reduced) for ECN packets to remove the smoothing delay without significantly affecting capacity sharing
between flows.
Therefore, we have made sure that RFC 7567 [21] recommends that AQMs allow distinct configuration
parameters for ECN and non-ECN packets. We also recommend the software drivers for existing hardware
to be (re)designed to allow distinct ECN configurations. This applies particularly to a wide range of
hardware that supports Weighted RED [29, 30, 31]. All that is necessary to support distinct ECN
configuration is for the packet classification at the front-end of the WRED algorithm to be able to
distinguish packets based on the ECN field, not just the Diffserv field. Given the ECN field comprises
the last 2 bits of the 8-bit field that used to specify type of service (ToS), before it was split into Diffserv
and ECN, this should not be difficult, and may already have been allowed on some systems.
Once such distinct packet classification is possible, it is only necessary to create two WRED configurations
for the same traffic class but with differences between ECN and non-ECN packets.

3.1.3 ECN Encapsulation Guidelines

AQM is not only applicable to queues at the IP layer; it is applicable wherever there is a queue. Unless
a packet is ECN-capable, there is nothing additional to do to make AQM work at any layer—dropping a
frame at the link layer obviously also drops the packet encapsulated within the frame, so the end-to-end
transport protocol will still detect the loss and respond accordingly.2

However, it is more difficult to make an AQM at a lower layer correctly interwork with ECN at the IP
layer. First the lower layer has to somehow only mark frames that contain an ECN-capable IP packet(s),
and secondly, the marking has to somehow be applied to any IP header(s) encapsulated within the frame.
The RITE project has not attempted to solve this problem for every specific link-layer technology.
Instead, we have produced guidelines on how to correctly design ECN marking for any protocol that
might encapsulate IP packets, so that it interworks correctly with IP [32]. We have also arranged for the
IETF to liaise with other standards bodies, specifically the IEEE and the 3GPP, so that the designers
of all lower layer protocols will use these guidelines as they consider how to add AQM and ECN to
their specific link-layer protocols. This is necessary because when ECN was standardized in 2001, it
represented a change to the IP protocol. Therefore all lower layer protocols that had been designed
against the original lower interface of IP now need to be redesigned.
Recognizing that every link-layer protocol is different, the guidelines propose four arrangements of feed-
back, such that any lower layer protocol should match one of the patterns. It is then possible to give
generic guidelines applicable to each arrangement, and therefore cover all known lower layer protocol
approaches in one document.
As well as IETF liaison with other standards bodies, it has been necessary to liaise with certain working
groups within the IETF that are standardizing new link-layer protocols, or new tunnelling encapsulations
of IP. For instant the TRansparent Interconnection of Lots of Links (TRILL) WG has already used the
draft guidelines, and presentations are planned for the Network Virtualization Overlays (NVO) Working

2If frames are larger than packets, dropping one frame will discard multiple packets. If frames (cells) are smaller than
packets, dropping one cell will still cause a whole packet to need to be discarded.
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Group and the Internet Area WG (int), which is responsible for the Generic Routing Encapsulation
(GRE) and many other tunnelling protocols.

3.1.4 Squared AQM

One of the difficulties of defining and configuring AQM algorithms is caused by the non-linearity of the
control signal (drop or mark) with respect to the rate that classic TCP endpoints are sending. To be
”TCP friendly” classic TCP implementations need to produce a sending rate that is inversely proportional
to the square root of the signal probability. As a result the load or number of flows is proportional to
the square root of the signal probability.
This non-linearity has a few consequences for the design and configuration of AQMs:

• Non-linear algorithms are usually too complex to handle at the packet rate. As a result complex
algorithms are performed at a lower rate, or heuristic/empirical algorithms are defined that have
no theoretical basis but experimentally behave ”good enough”.

• The operational range, with respect to the number of flows, of an AQM is bounded. It depends on
the range where the configuration parameters are effective (producing results that are within the
objectives of the AQM).

• Adaptation algorithms are defined to extend the operation range. Typically they are applied step-
wise, potentially adding oscillation-like effects to the traffic.

• To handle square roots of numbers smaller than 1 (typically smaller than 1%), twice the precision
is required for the internal variables, compared to the non-square-rooted values.

• The AQM cannot be used to control scalable congestion controllers.

From our work in the network signals activity on AQMs for scalable congestion controllers (meaning the
number of flows or load is proportional to the signal probability) we came to the conclusion that classic
AQMs can be linearised in a very simple way. Figure 3.1 shows the concept of ”Thinking Twice at the
Output”. By applying a squaring function just before applying the signal probability, the AQM can
work on the linear scalable probability, and the feedback to the congestion controller is adapted to the
square root that is part of the response function for classic congestion controllers. A squared probability
is very simple to implement. If p is compared with 2 random values instead of one, the probability is
effectively squared. Generating (or lookup of pre-generated) random values is done at line speed today.
Applying this simple extension removes all above mentioned disadvantages. From a configuraton point
of view, configuring parameters that depend on RTT and delay were linear already. A squared AQM
allows parameters that depend on the marking/dropping probability to become linear as well, and will
apply to scalable congestion controllers too.
The following subsection briefly describe the benefits and simplifications when a squared AQM design is
applied to a PIE AQM, but the application of this concept might be useful in future designs of AQMs.

3.1.4.1 A simpler PIE: PI2 PIE [33] has been proposed as an improvement to the original PI
controller based AQM. Several improvements on PIE have been proposed, but it can be both simplified
and optimized by the ”Thinking Twice at the Output” concept.
As the PI controller needs to control a non-linear system (Classic TCP flows), it needs to adapt its
proportional (β) and integral (α) gain factors to the level of congestion. The PIE implementation
proposes to ”correct” α and β based on the current p value in a stepwise manner, to keep the control
process in a stable regime.
Figure 3.2 shows our PI2 proposed implementation that avoids the need for the stepwise gain factor
adaptations, which results in full load-spectrum support, while still using a normal PI controller. The
PIE paper [34] proposed initially to divide the gain factors by 2 for p < 10% and to divide by 8 for p <
1%. Table 3.1 shows the changes in the output drop probability of d on different input deviations for both
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Figure 3.1: Linearity of Thinking Twice at the Output of an AQM

Figure 3.2: PI2: no need to autotune α and β to level of drop probability

PIE and PI2. As can be seen, the output values of PIE and PI2 are very close together, suggesting that
the PI2 controller will work at least as efficiently as the PIE controller, and over a wider operating range.
Additionally the output of the PI controller can be applied directly for marking scalable congestion
controlled flows.

3.2 Configuration parameters

The problem of tuning AQM parameters correctly has likely hampered AQM deployment significantly
over the years, as it is very hard to make general parameter suggestions or configuration guidelines. The
RITE project has, through several studies, made an effort to mitigate this problem. This section presents
configuration guidelines based on key observations from some of these studies.

3.2.1 AQM: Operating ranges and tunability

RFC 7567 [21] recommends deployment of a modern AQM technique (e.g. FQ-Codel or PIE) to man-
age the queues in network devices for the general Internet, where an AQM can auto-tune to network
characteristics based on its default configuration parameters. This report confirms this recommendation.
However, RFC 7567 also notes that although the default parameters of these AQM techniques can be
applied across a range of deployment environments, and are applicable to a wide range of environments
using default parameterisation, they are expected to require tuning for some specific types of links or
networks. The need for tuning parameters is determined by the network characteristics (bottleneck
capacity, path RTT) for which the AQM schemes are designed. These operating bounds have been
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Table 3.1: Output comparison between the stepwise corrected PIE at its targeted midpoints and the full
load-spectrum corrected linear PI2 AQMs.

delimited by RITE (more information can be found in D2.3 public deliverable):

1 baseRTT ≥ 200 ms;

2 Cbot < 2 Mbps;

3 Cbot > 100 Mbps.

PIE or CoDel can be tuned to obtain different trade-offs than the default, by changing τ and λ in CoDel
and τ, alpha and beta in PIE.
As one example, they have been tuned to alleviate the impact of buffering on latency sensitive traffic,
while preserving bulk throughput performance for cable modems networks: The CableLabs DOCSIS 3.1
specification includes requirements for cable modems [35, 36].
With appropriate tuning, the AQM techniques can be effective for other network characteristics, i.e.,
tuning to achieve a high bottleneck utilisation and a low queuing delay outside of their operating bounds.
PIE has been tuned to work within data centres, where flows typically experience a low RTT [23]. RITE
has proposed parameters for a rural satellite broadband network for PIE and CoDel [37].
AQM self-tuning techniques continue to evolve. The RITE project has offered guidance in two main
ways on this evolving area:

• The RITE project has highlighted that tuning for RTT is only necessary for drop-based AQMs.
This is because drop is an impairment so the network has to smooth out sub-RTT bursts of drop.
In contrast, the network can send bursts of ECN signalling without any smoothing, because ECN
is solely a signal, and not an impairment. Each host transport can smooth out these ECN bursts
itself, and inherently knows the timescale to smooth over—its own RTT. This recommendation to
avoid having to tune RTT by using ECN and not smoothing it in the network has been emphasised
on at least two occasions [38, 39].

• The RITE project has published initial draft recommendations on how to scale the configuration
of an AQM with link rate, and expected number of flows, RTT, and packet size (see § 3.2.2).
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3.2.2 Recommendations on Scaling AQM Configuration (Analytical Model)

Late in the RITE project we conducted an initial analysis of how AQM configuration should scale with
numbers of flows, link capacity, RTT and packet size [40, § 2.2]. The main insight in this report is that
the balance between queuing delay and loss chosen for one scale should be invariant for all scales. Even
though flow aggregation at high scale reduces variation in queuing delay, TCP performance drastically
drops if one exploits that opportunity to reduce delay by causing drop to increase. This dilemma can be
resolved by overprovisioning. The formula given for the necessary level of overprovisioning to be able to
minimise queuing delay without TCP causing loss to increase is:

X′

X
=

(DR + d∗q)

(DR + d∗q /
√

n)
,

where X′ is the necessary overprovisioned capacity, X is the capacity without overprovisioning, DR is
the expected average base RTT, d∗q is the target queueing delay and n is the number of flows.
For example, a link with an average base RTT of DR = 20ms could carry 100× more flows than currently
and have the target queueing delay reduced from 20 ms to 2 ms while keeping the loss at e.g. 2%, if the
aggregated capacity is over-provided by (20+ 20)/(20+ 2) = 1.8. That is, 180× more capacity for 100×
more flows.
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4 Future considerations from RITE research

RITE has experimented with and developed a number of low-latency focused end-host mechanisms based
on novel design considerations. However, these mechanisms are experimental and may be hard to evaluate
due to lack of deployment of support mechanisms. The following section makes some recommendations
for future considerations based on the acquired knowledge from the experiments performed within the
project.

4.1 Scalable and frequent ECN marking

In the RITE project, network mechanisms were developed to support compatibility between classic TCP
congestion controllers, e.g. New Reno or Cubic, and L4S TCP congestion controllers (Low Loss Low
Latency and Scalable with throughput), such as TCP-Prague, DCTCP, Relentless TCP and Scalable
TCP.
L4S TCP congestion controllers (CC) will support both low queuing delay and low loss rates, and the
signal frequency will scale with future link capacity rates. A frequent signal allows to mitigate throughput
unfairness between competing flows, to quickly estimate whether link capacity is reached, and accurately
estimate the level of congestion within an RTT.
An L4S CC design is recommended when Explicit Congestion Notification (ECN) is available, network
equipment can support high marking rates with very shallow queues, and if needed, network equipment
can support compatibility with Classic CC. An L4S CC will induce a high frequency congestion signal
that will result in high amounts of loss if ECN is not used (packets will be dropped instead of marked).
Experiments with DCTCP on low delay paths show that many application issues disappear. Applications
that use TCP with an L4S CC can enjoy:

• Hardly any packet drops, avoiding many retransmission timer issues

• Low latency using just TCP, no need to use UDP with alternative application layer congestion
controls

• Stable throughput rate for, e.g., HAS and DASH streaming

• Fast feedback when link throughput varies

4.2 Circuit breakers

As network devices and end hosts move towards implementation of mechanisms that are designed to
reduce latency, it is important to also consider the implications of these changes to the Internet archi-
tecture, and how the architecture will respond under overload. RITE work has contributed to an IETF
Best Current Practice (BCP) document that explains the design and operation of a “network transport
circuit breaker” (CB) [41]. This will be published within the RFC series. A network transport Circuit
Breaker (CB) is an automatic mechanism that is used to estimate congestion caused by a flow, and to
terminate (or significantly reduce the rate of) the flow when persistent congestion is detected. This is a
safety measure to prevent congestion collapse (starvation of resources available to other flows), essential
for an Internet that is heterogeneous and for traffic that is hard to predict in advance. [41] describes
three types of CB and defines requirements for building a CB and the expected outcomes of using one
within the Internet.
A CB is recommended when using network tunnels, and other non-congestion controlled applications.
Although a CB does not immediately impact the end-to-end latency of networks, use of CBs can prevent
starvation of resources, restoring the low latency operational point of a network after it has experienced
severe congestion. The long-term latency that flows experience when sharing with other flows can be
protected when the other flows implement an appropriate circuit breaker mechanism.
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5 Conclusions

This document has summarised recommendations for designing and configuring both end-hosts and
network components to enable low-latency communication over the Internet. The recommendations are
all outcomes of analysis and experimentation work done within work package 3 of the RITE project.
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Appendices
A ECN Support in Consumer Devices

RITE tested a selection of modern wireless routers targeted at home use to determine if they correctly
passed ECN signalling. The routers tested were:

• D-Link Wireless AC750 Dual Band Cloud Router

• NewLink Wireless Lite-N 150 Access Point Router

• Netgear N300 Wireless Router with External Antennas

• Netgear RangeMax Wireless Cable Router (108 Mbps)

• TP-Link 150Mbps Wireless N Nano Router

These routers were from a range of manufacturers and ran diverse firmware based on Linux, vxWorks
and custom kernels.
It was discovered that all the routers did successfully allow negotiation of ECN for TCP connections and
that ECN signalling information was passed successfully also. The Netgear N300 router even negotiated
ECN when connecting to the web-based configuration interface, and this has been attributed to “server-
mode” ECN being enabled by default in recent Linux kernels.

23


	Abbreviations
	Introduction
	End-host
	Design considerations
	Packet-based vs byte-based accounting

	Configuration parameters
	Configuration of RITE mechanisms
	Configuration of non-RITE mechanisms


	Network
	Design considerations
	AQM guidelines (IETF)
	Repurposing the existing Active Queue Management (AQM) equipment
	ECN Encapsulation Guidelines
	Squared AQM

	Configuration parameters
	AQM: Operating ranges and tunability
	Recommendations on Scaling AQM Configuration (Analytical Model)


	Future considerations from RITE research
	Scalable and frequent ECN marking
	Circuit breakers

	Conclusions
	References
	Appendices
	ECN Support in Consumer Devices

