
Enabling Internet-Wide Deployment of
Explicit Congestion Notification

Brian Trammell1, Mirja Kühlewind1, Damiano Boppart1,
Iain Learmonth2, Gorry Fairhurst2, and Richard Sche↵enegger3

1 Communication Systems Group, ETH Zurich, Switzerland
2 University of Aberdeen, Scotland

3 NetApp, Inc.

Abstract. Explicit Congestion Notification (ECN) is an TCP/IP exten-
sion to signal network congestion without packet loss, which has barely
seen deployment though it was standardized and implemented more than
a decade ago. On-going activities in research and standardization aim to
make the usage of ECN more beneficial. This measurement study pro-
vides an update on deployment status and newly assesses the marginal
risk of enabling ECN negotiation by default on client end-systems. Addi-
tionally, we dig deeper into causes of connectivity and negotiation issues
linked to ECN. We find that about five websites per thousand su↵er
additional connection setup latency when fallback per RFC 3168 is cor-
rectly implemented; we provide a patch for Linux to properly perform
this fallback. Moreover, we detect and explore a number of cases in which
ECN brokenness is clearly path-dependent, i.e. on middleboxes beyond
the access or content provider network. Further analysis of these cases
can guide their elimination, further reducing the risk of enabling ECN
by default.

1 Introduction

Explicit Congestion Notification (ECN) [1] is a TCP/IP extension that allows
congestion signaling without packet loss. Even though ECN was standardized in
2001, and it is widely implemented in end-systems, it is barely deployed. This
is due to a history of problems with severely broken middleboxes shortly after
standardization, which led to connectivity failure and guidance to leave ECN
disabled. The authors revisited this question in [2], finding an increase in the
number of servers which successfully negotiate and use ECN, but with nearly no
use of ECN within a national-scale access network.

In this paper we show that server-side support for ECN negotiation has
further increased. Unfortunately, server-side support is only the first step. Since
TCP clients initiate ECN negotiation, it is client-side support and negotiation by
default that is necessary to complete deployment on end-systems. While ECN
must also be enabled on routers together with an Active Queue Management
(AQM) scheme in order to be useful, the lack of deployment on end-systems
reduces the incentive to deploy on routers and vice-versa. In the past two years,



there has been increasing deployment of AQM [3] in the Internet; we expect this
trend to continue and to drive router support for ECN. We therefore choose to
focus on end-system deployment to break this loop, in the context of supporting
on-going research in this area [4] to define more beneficial signaling. Specifically,
this work aims to answer the following questions:

– What is the marginal risk of enabling ECN by default at the client-side?
– How can we detect and localize connectivity/signaling issues related to ECN?

To do so, we performed the following active measurements on nearly 600,000
popular web servers4 taken from the Alexa top million list:

– Connectivity dependency: can ECN negotiation cause connectivity issues?
– ECN readiness: how many webservers will negotiate ECN if asked?
– ECN signaling anomalies: is ECN signaling viable to use end-to-end?

Specifically, the key focus of this work is on connectivity issues caused by
ECN, in order to provide operational guidance and an answer to our most im-
portant question: is it now safe to use ECN-by-default on the client side to
drive ECN deployment in the Internet? On this point we conclude that enabling
ECN by default on client devices carries with it a low marginal risk of increased
connection latency when fallback as recommended in RFC 3168 [1] is properly
implemented; more measurement is necessary to localize the rare devices within
the Internet that may lead to path-dependent failure of ECN-enabled connec-
tions. We provide a patch for Linux at http://ecn.ethz.ch/ecn-fallback;
work to incorporate fallback into the Linux kernel mainline is ongoing.

All tools used in this study are available as open-source software, as are the
raw data and intermediate results listing servers by ECN support status, from
http://ecn.ethz.ch. We intend this work to introduce an ongoing ECN and
middlebox impairment observatory which will support an e↵ort to deploy ECN
on an Internet-wide scale.

1.1 Overview of Explicit Congestion Notification (ECN)

ECN uses two bits in the IP header to mark tra�c as ECN-capable or as having
experienced congestion along the path, and when used with TCP it uses two
flags, ece and cwr, to negotiate the use of ECN in the TCP handshake and
subsequently to echo congestion marking back to the sender during the connec-
tion. To review, a client sends an initial syn ece cwr to the server to negotiate
ECN; to confirm negotiation, the server responds syn ack ece, or to deny,
simply syn ack. Section 6.1.1.1 of RFC 3168 [1] recommends falling back to
non-ECN support if the initial syn ack ece connection attempt fails.

After successful negotiation, data packets from each side can be marked us-
ing one of the ECN-Capable Transport codepoints (ect(0)/ect(1)) in the IP

4 We examine HTTP in this study for comparison with related work, and because
large-scale probing of HTTP is less likely to be regarded as abuse than other services.



header, which is replaced with the ce codepoint if a router’s AQM along the
path determines the link is congested. This congestion signal is echoed back
to the sender marking all acknowledgments with the ece flag until the sender
acknowledges the receipt of the congestion signal with the cwr flag.

This describes the case where everything goes well. The negotiation and
signaling in ECN can however go badly for various reasons. First, the two bits
in the IPv4 and IPv6 header used for ECN were previously part of the Type of
Service (ToS) byte, and there are still middleboxes and firewalls deployed in the
Internet that use the old definition of these bits, interfering with ECN signaling.
Second, firewalls may be configured to strip the ECN bits in the IP or TCP
header, leading to negotiation and signaling errors; or to drop syn ack ece,
specifically to disable ECN, leading to connection failure. Third, end hosts and
TCP proxies may have design or implementation faults in their handling of the
semantics of the ECN bits.

1.2 Related Work

This work follows directly our previous work [2] and from [5], which sought to
measure the state of ECN deployment as of August 2014 and September 2011,
respectively. Our numbers for ECN capability and non-capability of webservers,
being taken from the Alexa top million and using a comparable methodology,
are therefore directly comparable to those in [2, 5]. We show that ECN support
in webservers continues to increase, and reached the majority of the top million
by the middle of 2014. Methodologies for packet mangling and marking are also
comparable to those in [5]. More generally, this work follows from the continuing
history of measurements of the Internet to estimate the ability to deploy new
featues at the endpoints (e.g. Honda et al [6], Medina et al [7]), and contributes
a data point to the continuing e↵ort to improve the situation (e.g. the IAB Stack
Evolution program5 [8], or middlebox cooperation schemes such as [9]).

2 Methodology

2.1 Measurement Setup and Data Set

All measurements in this paper were performed from vantage-points running
Ubuntu 14.04 (kernel 3.13.0 without syn retry fallback as in RFC3168 [1]),
run by commercial hosting provider Digital Ocean, in London, New York, and
Singapore. Initial investigation showed that all ECN signaling works properly
on this provider’s networks, and all sites have native dual-stack connectivity.
We ran trials on three seperate occasions, on 27 August, 4 September, and 9
September 2014.

As with previous work on testing ECN readiness of webservers [2, 5], we
select our targets from Alexa’s publicly available top million websites list. We
then resolve these to at most one IPv4 and one IPv6 address per site. Duplicate

5
http://www.iab.org/activities/programs/ip-stack-evolution-program



IP addresses are eliminated, taking the highest-ranked website for each address.
Name resolution was performed on 27 August 2014 from the London vantage
point using Google’s public DNS server (8.8.8.8), resulting in 581,737 unique
IPv4 addresses and 17,029 unique IPv6 addresses.

2.2 ECN-Spider and QoF

We built an active measurement tool atop the operating system’s ECN imple-
mentation, to test ECN negotiation and negotiation-linked connectivity. This
tool, called ECN Spider, is implemented in Python 3. ECN Spider takes as in-
put a list of IP addresses along with the associated domain name and a number
as a label to be used in later analysis; in this work, we use the Alexa rank. For
each unique address, the tool then simultaneously opens one connection without
attempting to negotiate ECN and one connection attempting to negotiate ECN,
and reports the connection status for each, along with timing and HTTP status
information.

ECN Spider’s design is based on utilizing Linux’s system-level configuration
of ECN negotiation using the sysctl facility, using the implemented TCP stack
instead of packet injection. For each site, we must therefore:

1. disable ECN using sysctl
2. open a socket to the target (attempts a syn 3whs)
3. enable ECN using sysctl
4. open a socket to the target (attempts a syn ece cwr 3whs)
5. perform HTTP requests via both sockets

To make it possible to test a half million websites in a reasonable amount
of time, the sysctl calls are performed in their own thread, which synchro-
nizes with several hundred worker threads, amortizing the cost (about 10ms) of
changing the system-wide setting. Each connection attempt is given 4 seconds
to succeed, which can lead to transient connection failures on slower websites,
but is necessary to keep slow and disconnected sites from delaying testing.

ECN Spider always tests connectivity without ECN first, in order to eliminate
the possibility that sending an ECN negotiation packet down a path changes the
result of the non-ECN syn. When performing HTTP requests, ECN Spider does
not follow redirects or otherwise crawl resources on the retrieved page.

While ECN Spider can detect whether or not a connection failed in the
presence or absence of ECN negotiation, it cannot detect whether or not ECN
was actually negotiated or observe negotiation anomalies, since this information
is not available in userland. Therefore, we simultaneously observe the tra�c
with the QoF [10] flow meter to evaluate the tra�c generated by ECN Spider
providing TCP flags and ECN signaling information on a per-flow basis.

2.3 IPtables Packet Mangling

We also combined ECN Spider with the Linux iptables connection tracking and
packet-mangling facilities in order to test the three following cases:



1. ece response: mark all outgoing packets with ce to verify that we see ece
2. cwr response: mark all incoming packets with ce to verify that we see

cwr in response to ece-marked ACKs
3. ce and ect blackhole testing: mark syn with ce/ect(0)/ect(1) to verify

that marked packets are not dropped on path

In all cases the TCP MSS was set to 300 bytes, in order to split HTTP
requests into multiple packets. For the ece and cwr response testing, we used
QoF for data analysis; for the ce and ect blackhole testing, we analyzed ECN
Spider’s connectivity logs assuming that a path that drops marked syns would
also drop other marked packets.

3 The Marginal Risk of Enabling ECN By Default

In our previous work [2], we found a multiple order-of-magnitude di↵erence be-
tween the proportion of webservers supporting ECN negotiation and marking,
and passively-measured flows on a university network actually negotiating and
using ECN. Since webserver support is largely driven by the default configu-
ration of the server operating system, the question naturally arises of whether
client-side support could be driven by the same mechanism.

This is not a viable strategy if there still exist many paths through the In-
ternet where attempting to negotiate ECN causes connectivity issues. Note that
even with RFC3168 fallback, ECN-dependent connectivity can lead to additional
connection setup latency, which depends on the client operating system. So we
turn our attention to the question of marginal risk: how many additional con-
nectivity issues can we expect if we turn ECN on by default?

3.1 Connectivity Dependency and Anomalies

Table 1 shows that for the vast majority of sites we probed, connectivity is clearly
independent of whether ECN is requested or not. 578,433 (99.43%) of IPv4 and
16945 (99.50%) of IPv66 exhibit no ECN-dependent connectivity.

In 2443 cases for IPv4 and 16 cases for IPv6, connectivity apparently depends
on ECN not being requested.The vast majority of these (2193 IPv4 and 13 IPv6
hosts) exhibit stable connectivity dependency at or near the host itself: every
attempt to connect to the host with ECN failed, and every attempt to connect
without succeeded.

This leaves us with the anomalous cases. We observe stable ECN dependency
on the path in 15 cases for IPv4. Here, every connection attempt requesting
ECN fails from one vantage point but succeeds from another. 6 of these sites
are within a single AS (26496, GoDaddy.com LLC), and occur on servers used
to park domain names. The remaining 9 may be more problematic, as they
could represent ECN-disabling devices on path. A further 34 IPv4 and 3 IPv6

6 Note that the relatively high prevalence of permanent IPv6 connection failure (nearly
10%) indicates continued limited operational experience with IPv6.



Table 1. Connectivity statistics, of 581,737 IPv4 hosts and 17,029 IPv6 hosts, all
vantage points, 27 Aug - 9 Sep 2014

IPv4 IPv6
hosts pct hosts pct description

553805 95.20% 14889 87.43% Always connected from all vantage points
3998 0.69% 1594 9.36% Never connected from any vantage point
8631 1.48% 138 0.81% Single transient connection failure

11999 2.06% 324 1.90% Non-ECN-related transient connectivity
578433 99.43% 16945 99.50% Total ECN-independent connectivity

2193 0.38% 13 0.08% Stable ECN dependency near host
15 0.00% 0 0.00% Stable ECN dependency on path
34 0.01% 3 0.02% Potential ECN dependency on path

201 0.03% 0 0.00% Temporal ECN dependency
2443 0.42% 16 0.09% Total apparent ECN-dependent connectivity

862 0.15% 69 0.41% Inconclusive transient connectivity

Fig. 1. TTL spectrum of ECN-dependent and -independent connectivity cases

Fig. 2. Proportion of sites failing to connect when ECN negotiation is requested

hosts exhibit potential ECN dependency: no connection attempt requesting ECN
succeeds from one vantage point, and at least one connection attempt with
ECN from another vantage point succeeds, though we cannot rule out transient
connectivity e↵ects here. We also observed time-dependent anomalies: 201 cases
for IPv4 where connectivity was ECN-independent from all vantage points during
one trial, but ECN-dependent during another. This probably represents changes
in network or host configuration during the time we ran our trials.

A further 862 cases for IPv4 and 69 for IPv6 cannot be definitively classified
as either ECN-dependent or transient, leading us to estimate an upper-bound
“blackhole” rate of 0.57% for IPv4 and 0.50% for IPv6. This is comparable to [5],
suggesting that boxes that break connectivity when ECN is requested are not
being replaced quickly.



Connectivity dependency can be linked to the operating system of the web-
server by estimating the initial TTL. As shown in figure 1, sites with initial TTL
64 (Linux) and 128 (Windows) are roughly equally represented among hosts ex-
hibiting ECN-dependent connectivity, while Linux servers are far more common
among the majority where connectivity is ECN-independent. ECN-dependent
connectivity failure also depends slightly on website rank as shown in figure 2:
as many as 2% of websites with an Alexa rank between 50,000 and 55,000 fail to
connect when ECN is requested, compared to a background rate of about 0.5%.
The distribution of these sites by rank is shown in figure 2.

3.2 RFC 3168 Fallback Testing

Based on our RFC3168 ECN fallback Linux patch applied to single Ubuntu 14.04
machine at ETH Zurich running the 3.13 kernel we reran ECN Spider against
the hosts which showed some evidence of connectivity depending on ECN and, as
expected, we found that this patch eliminated connection failures attributable to
ECN negotiation, at the cost of increased connection setup latency7. Therefore
the implementation of ECN fallback as the default behavior in all operating sys-
tems will restore connectivity and is an important step for wide-scale deployment
of ECN.

3.3 Conclusions

Our analysis therefore indicates that enabling ECN by default would lead to con-
nections to about five websites per thousand to su↵er additional setup latency
with RFC 3168 fallback. This represents an order of magnitude fewer than the
about forty per thousand which experience transient or permanent connection
failure due to other operational issues. Comparison with [5] indicates this situ-
ation is likely unchanged in its magnitude since 2011.

As not all websites are equally popular, failures on five per thousand websites

does not by any means imply that five per thousand connection attempts will fail.
While estimation of connection attempt rate by rank is out of scope of this work,
we note that the highest ranked website exhibiting stable connection failure has
rank 596, and only 13 such sites appear in the top 5000.

4 An Analysis of ECN Signaling

We then analyzed the traces taken from our three ECN Spider runs using QoF
to determine the extent of server-side support for ECN, and to investigate the
prevalence of the di↵erent ways in which the ECN mechanism can fail today in
the Internet.

7 Fallback latency is a function of client implementation. We note anecdotally that
additional latency is on the order of seconds on Windows 7, and barely noticeable
on Mac OS X Mavericks.



Table 2. ECN negotiation statistics, of 581,711 IPv4 hosts and 17,028 IPv6 hosts, all
vantage points, 27 Aug - 9 Sep 2014, compared to previous measurements.

IPv4 IPv6 2011 2012
hosts pct hosts pct pct[5] pct[2] Description

326743 56.17% 11138 65.41% 11.2% 29.48% Capable of negotiating ECN

324607 55.80% 11121 65.31% – – ...and always negotiate
2136 0.37% 17 0.11% – – ...sometimes negotiate, of which...
107 0.02% 1 0.01% – – negotiation depends on path
27 0.02% 0 0.00% – – sometimes reflect syn ack flags

248791 43.23% 3961 26.23% 82.8% 70.52% Not capable of negotiating ECN
2013 0.35% 83 0.48% – – ...and reflect syn ack flags
6177 1.06% 1929 11.33% – – Never connect with ECN (see §3.1)

Fig. 3. Comparison of TTL spectrum between ECN-capable and -incapable hosts

Fig. 4. Proportion of sites negotiating ECN by rank

4.1 ECN Negotiation

As seen in table 2, the majority of the top million web servers (56.17% of those
connecting for IPv4, 65.41% for IPv6) are now capable of negotiating ECN, con-
tinuing a more or less linear trend since 2008. We attribute this to the decision to
negotiate ECN if requested by the client by default in common server operating
systems. Indeed, there continue to be large di↵erences in ECN support per oper-
ating system, as shown in figure 3: note here that almost no initial-TTL 128 (i.e.
Windows) or 255 (Solaris; also Google) hosts negotiate ECN. Considering only
initial-TTL 64 (Linux) hosts, 326,720 of 468,555 or 69.73% are ECN capable.

As with connectivity, the proportion of hosts negotiating ECN depends
slightly on the rank of the site, as shown in figure 4. The highest ranked website
that will negotiate ECN has rank 6 (www.wikipedia.org). We note that web-
sites of higher rank generally use custom networking software, and are therefore



Table 3. Relationship between ECN IP and TCP flags (expected cases in italics)

IPv4 (N=581711) IPv6 (N=17028)
Marking ECN Reflect No ECN ECN Reflect No ECN

only ect(0) 315605 693 1995 8998 1 46
ect(0) + ect(1) 0 0 0 4 1 7

ect(0) on syn ack 7780 0 46 89 0 82

only ect(1) 3 1 17 0 10 12
ect(1) on syn ack 4 0 16 7 0 31

only ce 11 1 7 0 0 48
ce + ect 5 2 0 23 66 39

ce on syn ack 11 0 5 22 0 87

none 6939 1343 243150 2013 5 3694

not a↵ected by ECN negotiation by default. The top 100,000 sites are less likely
to support ECN negotiation than the remaining 900,000.

Troubling are the 107 IPv4 hosts and one single IPv6 host for which ECN
negotiation appears to be dependent on the vantage point. This indicates a device
on path which mangles the ECN TCP flags. There are also 2029 IPv4 and 16 IPv6
hosts which sometimes negotatiate and sometimes do not, indicating either path
or temporal instability in ECN signaling. Further, there are 2047 IPv4 hosts and
83 IPv6 hosts which reflect the ECN TCP flags on the syn ack (i.e., answering
syn ece cwr with syn ack ece cwr), indicating poorly implemented end-
host stacks or TCP proxies. Of these, 693 IPv4 hosts and one IPv6 host go on
to send ect(0) marked packets, indicating that the end host may believe it has
negotiated ECN correctly.

4.2 IP Signaling Anomalies

Assessing middlebox mangling of IP ECN signaling, we see in table 3 that 315,605
(97.2%) of the IPv4 hosts and 8998 (80.9%) of IPv6 hosts that always negotiate
ECN mark all subsequent packets ect(0) which is the expected signaling; we
would expect ECN to work in these cases. On the other hand, there are 6939
(2.1%) IPv4 and 2013 (18.1%) IPv6 hosts which always negotiate ECN but never
send an ect marked packet in any trial from any vantage point. While it is
acceptable for hosts which have negotiated ECN not to mark every data packet,
this could also indicate a middlebox along the path that does not interfere with
the ECN TCP signaling but does with ECP IP signaling. We note that this
anomaly is less common for IPv4 than reported in [5], but it is not clear to what
to attribute this change.

We can observe various interesting anomalies here which indicate possi-
ble mangling. 1995 IPv4 hosts do not appear to negotiate ECN but send
ect(0) marked packets anyway. 46 of these set ect(0) on the syn ack which
indicates a middlebox overwriting the former ToS field. The other 1849 cases
indicate either a broken TCP stack, or ECN TCP flag mangling on the down-



Table 4. Marking on flows without ECN negotiation attempt

IPv4 (N=581711) IPv6 (N=17028)
Codepoint Once Always syn ack Once Always syn ack

ect(0) 4592 104 68 179 2 101
ect(1) 21 18 18 116 76 39

ce 21 17 17 162 12 94

stream path wherein the server believes ECN has been negotiated, but the client
does not, i.e. the ece bit is cleared from the syn ack ece sent by the server.We
note that the magnitude of this anomaly is comparable with that reported in [5],
indicating little if any improvement in middlebox mangling of ECN on this point.
Conversely, table 4 gives insignt on hosts and paths using the ECN IP bits for
non-ECN purposes, showing statistics for ECN marking by servers on connection
attempts without ECN negotiation.

There are a few additional anecdotes to take from this analysis. The inci-
dence of IPv6 negotiation anomalies (15.20%) is an order of magnitude higher
than in IPv4 (1.93%), indicating that, although negotiation is supported by a
higher proportion of IPv6 than IPv4 servers, ECN support in IPv6 in hosts and
middleboxes is less mature. Many of these can be traced to specific providers: a
single ISP in the Netherlands, for instance, is responsible for all 22 of the hosts
that mark ce on the syn ack for IPv6 when negotiating ECN. Of five IPv4 hosts
which send both ce and ect marked packets, indicating the potential presence
of a ce-marking router, there is only one (www.grandlyon.com, 213.162.51.7,
as seen from London on 4 September and Singapore on 9 September 2014) for
which we cannot rule out this hypothesis. In neither trial was the connection
long enough to observe a cwr acknowledging the resulting ece.

4.3 IP ECN connectivity and ECN echo tests

To further verify correct ECN signaling end-to-end, we ran ce and ect blackhole
experiments on 24 September, and ece and cwr response tests on 23 September
2014, both from the London vantage point.

In the blackhole experiment, 4791 (0.82%) IPv4 hosts and 104 (0.61%) IPv6
hosts fail to connect when at least one ECN codepoint is set on the syn. Of
these, 2006 IPv4 and 12 IPv6 hosts are among those which also failed to connect
from all vantage points when ECN was requested (see section 3.1). 287 IPv4
and 17 IPv6 hosts fail to connect regardless of the ECN codepoint set. In this
experiment, the magnitude of transient failure is comparable to that in section 3.

The ece response test succeeded for IPv4 in 94.8% (309,842 hosts) of all
ECN-enabled cases in table 2. In contrast, the cwr response test succeeded
only in 44.3% (144,290 hosts) of the cases. Further, we found 690 IPv4 hosts
responding with ece and 351 hosts responding with cwr even though ECN was
not successfully negotiated. There also appears to be significant impairment or
implementation error in ECN signaling for IPv6, with only 7 hosts responding
ece and 9 cwr.



Reasons for ece response test failures include clearing of the ce codepoint
along the forward path or clearing of the ece flag along the reverse path. Reasons
for cwr test failures include clearing of the ece flag along the forward path,
clearing of the cwr flag along the reverse path, or termination of the flow before
cwr could be sent by the sender. As the median size of responses from hosts
that did set cwr in the test was 3168 bytes, while the median size from those
that did not was only 864 bytes (i.e., smaller than MSS), we do not consider our
cwr results as a reliable indication of impairment on path.

Therefore, while the ECN IP-related connectivity risk is proportional to that
related to ECN TCP signaling, the correct handling of ece and cwr signaling
after negotiation seem to be more impaired. Even worse, signaling is significantly
more impaired on IPv6 than on IPv4.

5 Conclusions, Outlook, and Future Work

We have shown that while webservers support for ECN continues to increase,
there does not appear to have been any appreciable reduction in the proportion
of potential connectivity failure linked to ECN since 2011. The vast majority of
connectivity problems we found with ECN negotiation were close to the server,
i.e., cases in which routing changes during a connection would not lead to con-
nection failure in the middle of an ECN-enabled flow. The fallback behavior
defined in RFC 3168 eliminates connectivity risk for these cases, such that en-
abling ECN by default would lead only to increased connection latency when
attempting to connect to about five of every thousand websites.

Verifying and localizing ECN path dependency in the remaining cases proves
to be quite di�cult. Bauer et al [5] used a tomography-based approach (as in
e.g. Tracebox [11]) for localizing ect mark clearing to an Autonomous Sys-
tem (AS); an approach that is unfortunately not applicable to our case. The
ICMP Time Exceeded message contains no TCP flag information, making it
impossible to verify path-dependent negotiation failures. Traceroute artifacts
and on-path blocking of traceroute make it similarly impossible to di↵erentiate
connectivity issues from traceroute issues. Correlation of data-plane and control-
plane routing information (e.g. from http://stat.ripe.net/) is a promising
approach, but in none of our path-dependent connectivity cases did it yield a
most-likely AS for the connectivity failure. We therefore leave further investiga-
tion of path dependency to future work, potentially leveraging existing wide-area
distributed measurement platforms such as RIPE Atlas8 to probe the set of paths
through the Internet more comprehensively, using the volume of data to make
up for the drawbacks of the traceroute-based tomography methods.

Our study shows that while it is safe for operating system vendors to activate
ECN on the client-side by default presuming they implement RFC 3168 fallback,
we cannot yet unreservedly recommend doing so. For a tiny minority of sites (15
of 598,766, or about 1 in 40,000) we cannot rule out path-dependent connectivity

8
https://atlas.ripe.net/



issues. A similar proportion of sites exhibit indiscriminate ce marking, which
would cause throughput degradation with use of ECN. These numbers are small
enough that targeted collaboration with the operations community based on
additional measurement is a viable way forward. We encourage other researchers
to use the tools and dataset made available at http://ecn.ethz.ch to continue
these investigations, and to guide the eventual elimination of ECN-unfriendly
middleboxes, in order to move toward full deployment of ECN.

6 Acknowledgments

This work was materially supported by the European Commission though the Seventh

Framework Grant Agreements mPlane (FP7-318627) and Reducing Internet Transport

Latency (RITE) (FP7-317700); no endorsement of the work by the Commission is

implied. Thanks to Stephan Neuhaus for his guidance during the development of ECN

Spider, to Daniel Borkmann and Florian Westphal for discussions on Linux kernel

modifications for RFC 3168 Fallback, and to Stuart Cheshire for his feedback.

References

1. Ramakrishnan, K., Floyd, S., Black, D.: The Addition of Explicit Congestion
Notification (ECN) to IP. RFC 3168, IETF (September 2001)

2. Kühlewind, M., Neuner, S., Trammell, B.: On the State of ECN and TCP Options
in the Internet. In: Proc. Passive and Active Measurement 2013, Hong Kong SAR,
China (March 2013)

3. Baker, F., Fairhurst, G.: IETF Recommendations Regarding Active Queue Man-
agement: draft-ietf-aqm-recommendation-08. Internet-draft, IETF (December
2014) (Work in Progress).

4. Kühlewind, M., Wagner, D.P., Espinosa, J.M.R., Briscoe, B.: Using Data Center
TCP (DCTCP) in the Internet. In: Proceedings of the third IEEE Globecom
Workshop on Telecommunication Standards: From Research to Standards. (2014)

5. Bauer, S., Beverly, R., Berger, A.: Measuring the state of ECN readiness in servers,
clients,and routers. In: Proc. of Internet Measurement Conference. (2011)

6. Honda, M., Nishida, Y., Raiciu, C., Greenhalgh, A., Handley, M., Tokuda, H.: Is
it still possible to extend TCP? In: Proc. of IMC 2011. IMC ’11, New York, NY,
USA, ACM (2011) 181–194

7. Medina, A., Allman, M., Floyd, S.: Measuring the evolution of transport protocols
in the Internet. SIGCOMM Comput. Commun. Rev. 35(2) (April 2005) 37–52

8. Trammell, B., Hildebrand, J.: Evolving Transport in the Internet. IEEE Internet
Computing (September 2014)

9. Craven, R., Beverly, R., Allman, M.: Middlebox-cooperative TCP for a non end-
to-end Internet. In: Proceedings of ACM SIGCOMM 2014 Conference, Chicago,
IL, USA (August 2014)

10. Trammell, B., Gugelmann, D., Brownlee, N.: Inline Data Integrity Signals for
Passive Measurement. In: Proc. Sixth Int. Wksp. on Tra�c Measurement and
Analysis, London, England (April 2014)

11. Detal, G., Hesmans, B., Bonaventure, O., Vanaubel, Y., Donnet, B.: Revealing
Middlebox Interference with Tracebox. In: Proceedings of the 2013 Internet Mea-
surement Conference. IMC ’13, Barcelona, Spain (2013) 1–8


